
1
DBD::Ingres

Version
Version 0.16 and, where noted, the forthcoming 0.20 release.

Author and Contact Details
The driver author is Henrik Tougaard. He can be contacted via thedbi-usersmailing list.

Supported Database Versions and Options
TheDBD::Ingres module supports both Ingres 6.4 and OpenIngres (1.x & II).

Connect Syntax
TheDBI->connect() Data Source Name, orDSN, can be one of the following:

dbi:Ingres:dbname
dbi:Ingres:vnode::dbname
dbi:Ingres:dbname;options

Whereoptionsare the SQL Option Flags as defined in the CA-OpenIngres System Refer-
ence Guide.

There are no driver specific attributes for theDBI->connect() method.

Numeric Data Handling
The database and driver supports 1 byte, 2 byte and 4 byte INTEGERS, 4 byte and 8 byte
FLOATS, and a currency type. The database and the driver (from version 0.20) supports
the DECIMAL-number type.

1

19 May 1999

2 DBD::Ingres

Type Description Range
---- ----------- -----
INTEGER1 1-byte integer -128 to +127
SMALLINT 2-byte integer -32,678 to +32,767
INTEGER 4-byte integer -2,147,483,648 to +2,147,483,647
FLOAT4 4-byte floating -1.0e+38 to 1.0e+38 (7 digits)
FLOAT 8-byte floating -1.0e+38 to 1.0e+38 (16 digits)
MONEY 8-byte money $-999,999,999,999.99 to $999,999,999,999.99
DECIMAL fixed point numeric Depends on precision (max 31) and scale.

DBD::Ingres always returns all numbers as Perl numbers—integers where possible, float-
ing point otherwise. It is therefore possible that some precision may be lost when fetching
DECIMAL types with a precision greater than Perl numbers (usually 16).

String Data Handling
Ingres andDBD::Ingres supports the following string data types:

VARCHAR(size)
CHAR(size)
TEXT(size)
C(size)

All string types have a limit of 2000 bytes. The CHAR, TEXT, and C types are fixed
length and blank padded.

All string types can handle national character sets. The C type will only accept printing
characters. CHAR and VARCHAR accept all character values including embedded nul
characters ("\0"). Unicode is not formally supported yet.

Strings can be concatenated using the SQL+ operator.

Date Data Handling
Ingres has just one date datatype: DATE. However, it can contain either an absolute date
and time or a time interval. Dates and times are in second resolution between approx
1-JAN-1581 and 31-DEC-2382. Intervals are stored to a one second resolution.

Ingres supports a variety of date formats, depending on the setting of the environment
variable II_DATE_FORMAT. The default output format isUS: DD-MMM-YYYY HH:MM:SS.

Many input formats are allowed. For the default format the following are accepted:
MM/DD/YYYY, DD-MMM-YYYY, MM-DD-YYYY, YYYY.MM.DD, YYYY_MM_DD, MMDDYY, MM-DD, and
MM/DD.

If you specify a DATE value without a time component, the default time is 00:00:00
(midnight). If you specify a DATE value without a date, the default date is the first day of
the current month. If a date format that has a two digit year, such as theYY in DD-MON-YY

(a common default), then the date returned is always in the current century.

19 May 1999

The following date-related functions are supported:

DATE(string) - converts a string to a date
DATE_TRUNC(unit, date) - date value truncated to the specified unit
DATE_PART(unit, date) - integer containing the specified part
DATE_GMT(date) - converts date to string "YYYY_MM_DD HH:MM:SS GMT".
INTERVAL(unit, interval) - express interval as numeric count of units

The currect date and time is returned by theDATE(’now’) function. The current date is
returned byDATE(’today’) .

The following SQL expression can be used to convert an integer ‘‘seconds since
1-jan-1970 GMT’’ value to the corresponding database date time:

DATE(’01.01.1970 00:00 GMT’)+DATE(CHAR(seconds_since_epoch)+’ seconds’)

And to do the reverse:

INT4(INTERVAL(’seconds’, DATE(’now’)-DATE(’01.01.1970 00:00 GMT’)))

A three letter time zone name (from a limited set) can be appended to a date. If no time
zone name is given, then the current client time zone is assumed. All datetimes are stored
in the database as GMT and are converted back to the local time of the client fetching the
data. All date comparisions in the server and done in GMT.

LONG/BLOB Data Handling
Ingres supports these LONG types:

LONG VARCHAR - Character data of variable length upto 2GB
LONG BYTE - Raw binary data of variable length upto 2GB

However, theDBD::Ingres driver does not yet support these types.

Other Data Handling issues
TheDBD::Ingres driver supports thetype_info() method.

Ingres supports automatic conversions between data types wherever it’s reasonable.

Transactions, Isolation and Locking
DBD::Ingres support transactions. The default transaction isolation level is ‘‘Serializ-
able’’. OpenIngres II supports ‘‘Repeatable Read’’, ‘‘Read Commited’’, and ‘‘Serializ-
able’’.

The reading of a record sets a read-lock preventing writers from changing that record and,
depending on lock granularity, possibly other records. Other readers are not hindered in
their reading. Writing a record sets a lock that prevent other writers from writing, and
readers from reading.

DBD::Ingres 3

19 May 1999

4 DBD::Ingres

TheSET LOCKMODEstatement allows you to change the locking granularity. It can be set
to:

ROW - lock only the affected rows (OpenIngres II only)
PAGE - lock the page that contains the affected row
TABLE - lock the entire table

With the statementSET LOCKMODE SESSION WHERE READLOCK=NOLOCKit is possible, but
definitelynot recommended, to set the isolation level to ‘‘Read Uncommited’’.

No-Table Expression Select Syntax
To select a constant expression, that is an expression that doesn’t inv olve data from a
database table or view, you can just select the expression. For example:

SELECT DATE(’now’)

Table Join Syntax
OpenIngres support outer joins in ANSI SQL-92 syntax. Ingres 6.4 does not support
outer joins.

Table and Column Names
The names of indentifiers cannot exceed 32 characters. The first character must be a letter
or an underscore (_), but the rest can be any combination of letters, numerals, dollar signs
($), pound signs (#), and at signs (@).

However, if an identifier is enclosed by double quotation marks ("), it can contain any
combination of legal characters, including spaces but excluding quotation marks. This is
not supported in Ingres 6.4.

Case significance is determined by the settings for the Ingres installation as set by the
administrator when Ingres is installed.

National character sets can be used in identifiers, if enclosed in double quotation marks.

Case Sensitivity of LIKE Operator
The LIKE operator is case sensitive.

The UPPERCASE(or LOWERCASE) function can be used to force a case insensitive match,
e.g., UPPERCASE(name) LIKE ’TOM%’ although that does prevent Ingres from making use
of any index on the name column to speed up the query.

19 May 1999

Row ID
The Ingres ‘‘row ID’’ pseudocolumn is called tid. It is an integer. It can be used without
special handling. For example:

SELECT * FROM table WHERE tid=1029;

Automatic Key or Sequence Generation
OpenIngres II supports ‘‘logical key’’ columns. They are defined by using a special data
type: TABLE_KEY WITH SYSTEM MAINTAINED. Ingres 6.4 required an extra-cost option to
support that.

A column can be defined as either TABLE_KEY or OBJECT_KEY. Table_keys are
unique in the table, whereas object_keys are unique in the entire database.

DBD::Ingres can’t currently find the value of the last automatic key inserted, though it
may do so in the future if enough people ask nicely, or someone contributes the code.

Automatic Row Numbering and Row Count Limiting
There is no simple way to select a pseudocolumn that sequentially numbers the rows
fetched by a select statement.

Parameter Binding
Parameter binding is directly suported by Ingres. Only the default? placeholder style is
supported.

When using thebind_param() method, the common integer, float, and char types can be
defined using the TYPE attribute. Unsupported values of the TYPE attribute generate a
warning.

Stored Procedures
Calling a stored procedure is done by the ‘‘execute procedure’’ statement. For example:

$dbh->do("execute procedure my_proc(param1=’value’)");

It is not yet possible to get results.

Table Metadata

DBD::Ingres 5

19 May 1999

6 DBD::Ingres

DBD::Ingres version 0.20 supports thetable_info() method.

The IICOLUMNS catalog contains information about all columns of a table.

The IIINDEXES catalog contains detailed information about all indexes in the database,
one row per index. The IIINDEX_COLUMNS catalog contains information about the
columns that make up each index.

Primary keys are indicated in thekey_sequence field of the IICOLUMNS catalog.

Driver-specific Attributes and Methods
DBD::Ingres has no driver-specific database handle attributes. However, it does support a
number of statement handle attributes. Each returns a reference to an array of values, one
for each column of the select results.

ing_type

’i’ for integer columns,’f’ for float and’s’ for strings

ing_ingtype

The numeric Ingres type of the columns

ing_length

The Ingres length of the columns (as used in the database)

DBD::Ingres supports just one private method:

get_dbevent()

This private method callsGET DBEVENTand INQUIRE_INGRES to fetch a pending
database event. If called without an argument, a blockingGET DBEVENT WITH WAIT is
called. A numeric argument results in a call toGET DBEVENT WITH WAIT= :seconds .

Positioned updates and deletes
Positioned updates and deletes are supported inDBD::Ingres version 0.20 using the
WHERE CURRENT OFsyntax. For example:

$dbh->do("UPDATE ... WHERE CURRENT OF $sth->{CursorName}");

The CursorName is automatically defined byDBD::Ingres for each prepared statement.

Differences from the DBI Specification

19 May 1999

Prepared statements do not work across transactions because commit/rollback
close/invalidate are all prepared statements. Work is underway to fix this.

URLs to More Database/Driver Specific Information
http://www.cai.com/products/ingres.htm

Concurrent use of Multiple Handles
DBD::Ingres supports an unlimited number of concurrent database connections to one or
more databases.

It also supports the preparation and execution of a new statement handle while still fetch-
ing data from another statment handle associated with the same database handle.

DBD::Ingres 7

19 May 1999

