
CIPP Reference Guide

Copyright 1999-2001 dimedis GmbH, Cologne
All Rights Reserved

This documentation covers CIPP version 2.28.

http://www.dimedis.de/
http://www.perl.com/CPAN/modules/by-module/CIPP/

Table Of Contents
Introduction . 7
CIPP generates Perl code . 8

Environments where CIPP can be used . 9
CGI::CIPP . 9
Apache::CIPP . 9
new.spirit . 10

Basic Syntax Rules . 10
CIPP command structure . 10
Case sensitivity of CIPP parameters 11
CIPP return parameters . 12
Context of CIPP commands . 12
Add comments to your source . 13
Table Of Contents iii

Error messages . 14
CIPP errors . 14
Perl errors . 14

Table Of Contents

CIPP preprocessor commands . 15

CGI::CIPP. 17
Using a extra ScriptAlias . 20
Using mod_rewrite . 21
CGI::SpeedyCGI and CIPP::CGI . 22

Apache::CIPP . 23

Command Groups. 25
Variables and Scoping . 25
Control Structures . 26
Import . 26
Exception Handling . 26
SQL . 27
URL- and Form Handling . 27
HTML Tag Replacements . 27
Interface . 27
Apache . 28
Preprocessor . 28
Debugging . 28

Alphabetical Reference . 29
. 29
A . 30
APGETREQUEST . 31
APREDIRECT . 32
AUTOCOMMIT . 33
!AUTOPRINT . 35
BLOCK . 37
CATCH . 38
COMMIT . 40
CONFIG . 42
iv Table Of Contents

DBQUOTE . 44
DO . 46
DUMP . 47

Table Of Contents

ELSE . 48
ELSIF . 49
FOREACH . 50
FORM . 52
GETPARAM . 56
GETPARAMLIST . 57
GETURL . 58
HIDDENFIELDS . 61
HTMLQUOTE . 63
!HTTPHEADER . 64
IF . 66
IMG . 67
INCINTERFACE . 68
INCLUDE . 71
INPUT . 73
INTERFACE . 76
LOG . 78
MODULE . 80
MY . 82
OPTION . 83
PERL . 84
!PROFILE . 86
REQUIRE . 88
ROLLBACK . 89
SAVEFILE . 91
SELECT . 93
SQL . 95
SUB . 100
TEXTAREA . 102
THROW . 103
TRY . 105
URLENCODE . 106
Table Of Contents v

USE . 107
VAR . 108
WHILE . 110

Table Of Contents
vi Table Of Contents

CHAPTER 1 CIPP - CGI Perl
Preprocessor
This chapter gives a high-level overview about what CIPP is, where it can be used
and introduces you to the general syntax of the language.

Introduction

The name CIPP is an acronym for CgI Perl Preprocessor. With CGI, a web server
calls a program which generates a HTML page. The CGI allows passing of param-
eters, so the returned page might look different depending on the input to the pro-
gram. This is what is commonly refered to as a „dynamic“ page.

CGI programms are just like normal ones, only there is a lot of code printing out
HTML statements. The majority of the code is concerned about the layout of the
generated page. This is a nuisance for two reasons: first, it is difficult to see the
structure of the generated page by looking at the source code, second, a lot of the
code just consists of „print“ statements - these are boring to write.

CIPP takes another approach to CGI programming: you basically write an ordinary
Introduction 7

HTML page and insert into the page the code, which is responsible for the dynamic
parts. This way, you can easily see the structure of the page and for generating
HTML, you can simply write the HTML directly onto the page.

8

CIPP - CGI Perl Preprocessor <?>

CIPP generates Perl code

CIPP is a preprocessor which generates pure Perl code out of your CIPP embedded
HTML pages. Depending on your environment, this Perl code can either be
installed as a CGI program on the webserver or is executed immediately through an
appropriate handler. More details about the different environments and their prop-
erties are discussed later in this document.

Here is a little example of a CIPP code snippet to demonstrate the simplicity of the
preprocessing mechanism (this anticipates some basics of the CIPP programming
language, a detailed description of the language follow beyond this chapter).

<?IF COND=“$event eq ’show’“>
 The value of the variable ’foo’ is:

 $foo
<?/IF>

You will get a HTML formatted content of the Perl variable $foo, assumed the vari-
able $event contains the string ’show’.

CIPP will generate Perl code similar to this.

if ($event eq ’show’) {
 print “The value of the variable ’foo’ is:
\n“;
 print “$foo\n“;
}

This was really a simple example. The CIPP <?IF> is translated to a Perl ’if’ com-
mand. The non CIPP text blocks (usually containing some HTML) are translated to
a Perl ’print’ command. There are many, more complex CIPP commands that save
you a lot of work.

So, here you can see the difference between CIPP and ordinary CGI programming.
With CIPP, HTML is normal and code is embedded in a way which almost looks
like HTML. CGI programs, on the other hand, contain a lot of print statements
which makes them hard to read.

Ok, message understood. Now you know what CIPP basically does for you. In the
next chapter you will learn in what way and environment you can apply it.
Introduction

Environments where CIPP can be used <?>

Environments where CIPP can be used

As mentioned above there are three different environments where you can use CIPP
programs:

• CIPP::CGI - using CIPP via a central CGI wrapper program

• Apache::CGI - using CIPP as a module inside the Apache webserver

• new.spirit - managing projects of many CIPP files, generating standalone CGI
programs for production web systems.

A discussion of these three possible use cases follows, where the architecture of
each environment is described briefly. There are extra chapters with configuration
details about all of them.

CGI::CIPP

CGI::CIPP is a Perl module which enables you to use CIPP on every CGI capable
webserver. It is based on a central wrapper script, which does all the preprocessing.
It executes the generated Perl code directly afterwards. Additionally, it implements
a filesystem based cache for the generated code. Preprocessing is done only when
the corresponding CIPP source code changed on disk, otherwise this step is
skipped.

CGI::CIPP is prepared for usage inside a persistent Perl environment, e.g. in con-
junction with the CGI::SpeedyCGI module, which is not part of the CIPP distribu-
tion, but freely available on CPAN. CGI::CIPP will cache the Perl compiled
programs as subroutines. Subsequent calls to the same CIPP page are answered
immediately, because neither CIPP preprocessing nor Perl compiling needs to be
done in this case.

Your CIPP source files are placed in a particular directory on a webserver. With
some additional webserver configuration you can handle them as „normal“ HTML
documents beneath other webserver documents like images or traditional static
HTML documents. See the chapter about CGI::CIPP configuration for details.

Apache::CIPP
Environments where CIPP can be used 9

The architecture of the Apache::CIPP is very similar to the one of CGI::CIPP. The
main difference is that the central CGI wrapper of CGI::CIPP is plugged into the
Apache webserver as a Request Handler using mod_perl, which extends the

10
CIPP - CGI Perl Preprocessor <?>

Apache webserver with a Perl interpreter. Another difference ist that the configura-
tion options for Apache::CIPP are placed into the webserver configuration file.

All the caching is done exactly like CGI::CIPP does. See the chapter about
Apache::CIPP configuration for details.

new.spirit

new.spirit uses CIPP in a different way. new.spirit is a web based development
environment for creating software projects based on CIPP. In this environment the
Perl code generated by CIPP for each page will be stored as a CGI executable,
installed in a cgi-bin path of your webserver. This prevents you from installing your
CIPP sources on the productive webserver system, only the preprocessed Perl code
is installed there.

Another difference using CIPP with new.spirit is the naming convention for adress-
ing CIPP programs. CGI::CIPP and Apache::CIPP use URL’s as adresses,
new.spirit expects a special dot-separated notation. See the chapter „Basic syntax
rules“ for details. For new.spirit CIPP configuration please refer to the new.spirit
documentation.

Basic Syntax Rules

This chapter describes the CIPP syntax rules.

CIPP command structure

CIPP commands are embedded into HTML code, so the syntax is related to the
HTML syntax. CIPP commands are written as tags, like HTML does. The main dif-
ference is that CIPP command tags begin with <? instead of <.

Like in HTML, there are two kinds of commands: single commands and block
commands. Block commands have a start and end tag. A block command influ-
ences the HTML respectively CIPP code surrounded by it.

<?COMMAND [par=value ...] >
Basic Syntax Rules

Basic Syntax Rules <?>

or

<?COMMAND [par=value ...]>
 HTML or CIPP code
<?/COMMAND [par=value ...]>

Whitespaces between <? and COMMAND are ignored. The command names are not
case sensitive. Parameters are written als par=value pairs. Assigning a value to a
parameters is optional. A parameter without a value is called a switch.

A parameter with value has the following syntax:

parameter_name = parameter_value

Whitespaces before and behind the = sign are ignored. If the value you want to
assign contains whitespaces you must quote the value using double quotes.

<?COMMAND par_1=value_without_whitespaces
 par_2=“value with whitespaces“>

If your value contains double quotes you must escape them using the backslash
character.

<?COMMAND par_2=“value with \“double quotes\““>

You may place Perl variables inside your value string, they are expanded in the
usual way (there is one exception regarding return parameters, see section below).

A switch without a value has this simple syntax:

<?COMMAND SWITCH_NAME>

Case sensitivity of CIPP parameters

Due to historical reasons parameter names are also not case sensitive. Actually the
CIPP preprocessor converts all parameter names to lower case at a very early stage.
So the exact case notation of the parameters is lost for later processing. This is usu-
ally no problem and works as you expect. HTML behaves the same.

Important Note: This approach has some side effects which you need to be aware
Basic Syntax Rules 11

of. For certain CIPP commands, you will be expected to specify Perl variables in
the same syntactical manner of CIPP parameters. Not matter what you do, CIPP

12
CIPP - CGI Perl Preprocessor <?>

will always work on the lower case version of these names - without giving you any
warning.

The CIPP commands affected by this are: <?MY>, <?INCLUDE>, <?GETURL>
and <?HIDDENFIELDS>. Please refer to the CIPP Reference chapter for details
about these commands.

Important Hint: Always use lower case variable names!

CIPP return parameters

There are many CIPP commands that return parameters back to you. Since com-
mands are inside tags, there is no way to use them in an assignment. This means
that you have to specify a variable (or more than one) which should hold the return
values.

These return variables are treated different from input variables.

$foo = “whatever“; $bar = “x“;
...
<?COMMAND input=$foo output=$bar>

is the same as

<?COMMAND input=“whatever“ output=$bar>

but no the same as

<?COMMAND input=$foo output=“x“>

So, the return value from the command will be placed inside $bar. You cannot see
from the syntax alone which parameter is expanded and which isn’t. However, for
each CIPP command there is a desription of return parameters (if there are any).

Context of CIPP commands

There are three different contexts which CIPP knows. They are listed and explained
below. CIPP switches from one context to another only by certain block com-
Basic Syntax Rules

mands. Normal CIPP commands do not change the context.

Basic Syntax Rules <?>

1. HTML

This is the default context your CIPP program is in. That means, if your pro-
gram does not contain any CIPP commands, you will produce a simple, static
HTML page.

Inside HTML context, Perl variables are expanded with their content, like Perl
does it if you use variables in a double quoted string.

In fact HTML contexts are translated to a Perl print command, which prints the
whole HTML block using some kind of double quotes.

You can force the HTML context using the <?HTML> command, if you are in a
Perl context (see below).

2. Variable Assignment

This is a special context which is only existent inside of a <?VAR> block. Inside
this block no other CIPP commands are allowed. Perl variables will be
expanded. Perl expressions are also possible - see the command description for
details.

With <?/VAR> you terminate the assignment block and CIPP goes back to
HTML context.

3. Perl

The block command <?PERL> switches to this context. The whole block will
be interpreted as pure Perl code. No automatic HTML output is done here, you
have to use print yourself to do that. You may also use only certain CIPP com-
mands inside a Perl block, which are <?INCLUDE> and <?SQL>. This list of
such commands will be expanded in future.

With <?/PERL> you terminate the command block and CIPP goes back to
HTML context.

Add comments to your source

CIPP uses a similar mechanism for writing comments like Perl does. Each line
which begins with a # sign is interpreted as a comment and is fully ignored. Lead-
ing whitespace is ignored; you’re free to indent your comments.

It is not possible to preceed a CIPP comment by a CIPP command or HTML code.
This would prevent you from using # in HTML code (and the least things that we
Basic Syntax Rules 13

want is to mess up HTML code - that is any more than it already is).

You can use the CIPP command <?#> for nestable multiline comments.

14
CIPP - CGI Perl Preprocessor <?>

These lines show valid CIPP comments:

<?PERL>
 # this is indented comment
<?/PERL>
this comment is not indented

<?#>
 this is a multiline comment
<?/#>

The following example is invalid. The comment will be printed, because it is inter-
preted in HTML context (see section above about HTML context).

<?PERL> $path = ’/’ <?/PERL> # setting the path

The corresponding web page will contain your comment:

setting the path

Error messages

There are two kinds of error messages a CIPP developer must handle, depending on
the stage the error occured: in CIPP preprocessing or Perl execution. Both stages
have their own error messages.

CIPP errors

These errors occur while translating your CIPP code to Perl. They regard only the
CIPP syntax, no Perl syntax checking is done at this stage. The corresponding error
messages and line numbers point to the appropriate sections of your CIPP program.
In CGI::CIPP and Apache::CIPP environments you’ll get a HTML page with the
CIPP error messages. The source code is printed out with the according sections
highlighted.

Perl errors
Error messages

Perl errors occur while executing the Perl program, which has been generated by
CIPP. There are two classes of Perl errors: compiler and runtime errors.

CIPP preprocessor commands <?>

Normally, a compiler error in a CGI program results in a „Server Error“, if you exe-
cute it on your webserver. The error messages may be written to the webserver
error log file, depending on your webserver software and configuration.

With CIPP generated programs you should never see a „Server Error“. All CIPP
environments (CGI::CIPP, Apache::CIPP and new.spirit) initiate a Perl syntax
check after translating the CIPP code and before executing the Perl code the first
time. Perl compiler errors are caught this way and a HTML error page is generated
for you. This saves you the hassle of digging into your webserver error log file for
detailed information.

Runtime errors are caught by the CIPP execption handler and can appear in differ-
ent ways, depending on the location inside your program, where the error occurs.
The exception handler prints out the error message, at the actual position, where the
error occured. Maybe you produced already some HTML output, the error message
will appear right beyond it. If you’re using some complex table layout, it can hap-
pen, that your webbrowser is unable to render the page correctly and the error mes-
sage is invisible due to this. You have to look into the produced HTML source code
to see the error message in this case.

All Perl error messages refer to the generated Perl code, not to your CIPP code. So
line numbers are not comparable with the line numbers of your CIPP program.

CIPP preprocessor commands

There are several preprocessor commands. Those commands always begin with an
exclamation mark:

<?!COMMAND [par=value ...] >

or

<?!COMMAND [par=value ...]>
 ...
<?/!COMMAND>

The special about these commands is, that they take effect at the preprocessor time
CIPP preprocessor commands 15

and not at runtime. They modify the internal state of the preprocessor and do not
create Perl code directly, like most of the other CIPP commands do.

16
CIPP - CGI Perl Preprocessor <?>

Due to this the lexical environment of preprocessor commands does not matter the
usual way. E.g. you may want to place a <?!AUTOPRINT> command inside of an
<?IF> block to advice the preprocessor to generate print statements for HTML
blocks or not (see the description of the <?!AUTOPRINT> command for details).
But this will not work. See this example:

<?IF COND=“$user_wants_an_image_file“>
 <?!AUTOPRINT OFF>
 <?PERL>
 print “Content-Type: image/gif\n\n“;
 system (“cat /tmp/image.gif“);
 <?/PERL>
<?ELSE>
 Ok, you want no image, so you will
 get some nice html code.
<?/IF>

Looks ok but will not work!

1. The <?AUTOPRINT> command causes CIPP not to generate any HTTP head-
ers for you. So the <?ELSE> block will not work, because no HTTP headers
are printed. You’ll get a 500 Server Error.

2. But even if you print headers there (with „Content-type: text/html“): the HTML
block will not be printed either. The <?!AUTOPRINT> command does not care
about the logical context. The preprocessor reads the file from the top to the bot-
tom and will switch off autoprinting when recognizing the <?!AUTOPRINT
OFF>. It will not be switched on and the end of the <?IF> block. Autoprinting
will be disabled for the rest of the file. So the HTML code inside the <?ELSE>
block will never be printed out.

So use preprocessor commands with care and keep this special implementation
always in mind. Each preprocessor command description in this manual will give
you hints about the corresponding special behaviour.
CIPP preprocessor commands

CHAPTER 2 CIPP Configuration
This chapter describes the configuration details for usage in connection with
CGI::CIPP and Apache::CIPP. If you use CIPP in conjunction with new.spirit
please refer to the according section of the new.spirit handbook.

Please check also the documentation of the corresponding Perl modules
(CGI::CIPP and Apache::CIPP).

CGI::CIPP

CGI::CIPP is a Perl module which enables you to use CIPP on every CGI capable
webserver. It is based on a central wrapper script, which does all the preprocessing.
It executes the generated Perl code directly afterwards. Additionally, it implements
a filesystem based cache for the generated code. Preprocessing is done only when
the corresponding CIPP source code changed on disk, otherwise this step is
skipped.

First fetch CGI::CIPP from your next CPAN mirror and install it the usual way
(perl Makefile.PL; make test; make install).
CGI::CIPP 17

18
CIPP Configuration CGI::CIPP

Now create a CGI program in a directory, where CGI programs usually reside on
your server (e.g. /cgi-bin/cipp), or configure this program another way to be a CGI
program.

This program is the central CGI::CIPP wrapper. It only consists of a single function
call to the CGI::CIPP module, with a hash of parameters for configuration. This is a
example:

#!/usr/local/bin/perl

The URL of this program is /cgi-bin/cipp

use strict;
use CGI::CIPP;

CGI::CIPP->request (
document_root => ’/www/cippfiles’,
directoy_index => ’index.cipp’,
cache_dir => ’/tmp/cipp_cache’,
databases => {

test => {
data_source => ’dbi:mysql:test’,
user => ’dbuser’,
password => ’dbpassword’,
auto_commit => 1

},
foo => {

...
}

}
default_database => ’test’,
lang => ’EN’

);
CGI::CIPP

CIPP Configuration CGI::CIPP

A brief description of the parameters passed to the CGI::CIPP->request call
follows:

document_root This is the base directory where all your CIPP files
resides. You will place CIPP programs, Includes
and Config files inside this subdirectory. Using
subdirectories is permitted.

Beware that if you place your CIPP files into a
subdirectory of your webservers document root,
you risk that someone can fetch your CIPP source
files, if he knows the URL of your CIPP document
root. If you do not use the mod_rewrite configura-
tion explained beyond, you never should place
your CIPP files into your webservers document
root. There is no advantage of doing this.

directory_index If you want CGI::CIPP to treat a special filename
as a directory index file, pass this filename here. If
you access a directory with CGI::CIPP and a
according index file is found there, it will be exe-
cuted.

cache_dir This names the directory where CGI::CIPP can
store the preprocessed CIPP programs. If the direc-
tory does not exist it will be created. Aware, the the
directory must have write access for the user under
which your webserver software is running.

databases This parameter contains a hash reference, which
defines several database configurations. The key of
this hash is the CIPP internal name of the database,
which can be addressed by the DB parameter of all
CIPP SQL commands. The value is a hash refer-
ence with the following keys defined.

 data_source This must be a DBI conforming data source string.
Please refer to the DBI documentation for details
about this.

 user This is the username CIPP uses to connect to the
database
CGI::CIPP 19

 password This password is used for the database user.

20
CIPP Configuration CGI::CIPP

The CGI wrapper program uses the CGI feature PATH_INFO to determine which
page should be executed. To execute the CIPP page ’test.cipp’ located in ’/www/
htdocs/cippfiles/foo/test.cipp’ you must specify the following URL (assuming the
configuration of the example above):

http://somehost/cgi-bin/cipp/foo/test.cipp

You simply add the path of your page (relative to the path you specified with the
document_root parameter) to the URL of the CGI wrapper.

Be aware of the real URL of your page if you use relative URL’s to non CIPP
pages. In the above example relative URL’s must consider that the CGI wrapper
program is located in a different location as the directory you declared as the CIPP
document root. To avoid confusion about this, you should configure your web-
server in that way, that the CGI wrapper program has a URL which is located inside
your webservers document root. This way using relative URLs is easier, because
you never left the document root of your webserver.

If you’re using the Apache webserver (what is always recommended :) you have
several alternatives of doing this.

• using a extra ScriptAlias

• using mod_rewrite

Using a extra ScriptAlias

 auto_commit This parameter sets the initial state of the Auto-
Commit flag. Please refer to the description of the
<?AUTOCOMMIT> command or the DBI docu-
mentation for details about AutoCommit.

default_database This takes the name of the default database. This
database is always used, if a CIPP SQL command
ommits the DB parameter. The value passed here
must be a defined key in the databases hash.

lang CIPP has multilanguage support for its error mes-
sages, actually english (’EN’) and german (’DE’)
are supported.
CGI::CIPP

This is a example configuration of using a ScriptAlias to configure CIPP for easy
usage of relative URLs.

CIPP Configuration CGI::CIPP

These are the corresponding basic Apache configuration parameters:

Now the CGI wrapper program URL is located inside your document root. This is a
example URL for a CIPP page located in /www/htdocs/cipp/foo/test.cipp

http://somehost/cipp/foo/test.cipp

The disadvantage of this configuration is, that your CIPP root directory /www/cipp-
files cannot contain other files than CIPP files. It is not possible to put images or
static HTML documents here, because you cannot reach these documents with nor-
mal URLs.

Using mod_rewrite

You avoid the above mentioned disadvantage if you use mod_rewrite. These are the
corresponding basic Apache configuration parameters (please refer to the Apache
documentation for details). You will need Apache version 1.2.x or better for using
mod_rewrite.

The CGI wrapper program is still located in a extra cgi-bin directory. But the
RewriteRule directs all URL’s with the suffix .cipp, no matter where they are
located, to the CIPP CGI wrapper program.

Now we have to change the CGI::CIPP configuration:

This is slightly different. We now declare the Apache DocumentRoot also to be

DocumentRoot “/www/htdocs“

ScriptAlias “/cipp“ “/www/cgi-bin/cipp“

DocumentRoot “/www/htdocs“

ScriptAlias “/cgi-bin“ “/www/cgi-bin“

RewriteEngine “on“

RewriteRule “^/(.*\.cipp.*)“

“/cgi-bin/cipp/$1“ [PT]

document_root /www/htdocs
CGI::CIPP 21

the document_root of CGI::CIPP, so no special subdirectory is needed. The
Apache rewrite engine is responsible for translating URL’s with the suffix .cipp to a
appropriate call of the CGI wrapper program.

22
CIPP Configuration CGI::CIPP

This is a example URL for a CIPP page located in /www/htdocs/foo/test.cipp

http://somehost/foo/test.cipp

Now you are able to place CIPP files on your webserver wherever you want,
because there is no special CIPP directory anymore. Only the suffix .cipp is rele-
vant, due to the RewriteRule above.

CGI::SpeedyCGI and CIPP::CGI

There exists a really nice module called CGI::SpeedyCGI, which is available freely
via CPAN. It implements a nifty way of making Perl CGI processes persistent, so
subseqeuent CGI calls are answered much more faster.

Using CIPP::CGI together with CGI::SpeedyCGI is easy. Simply replace the perl
interpreter path in the shebang line #!/usr/local/bin/perl with the accord-
ing path to the speedy program, e.g.: #!/usr/local/bin/speedy.

Refer to the CGI::SpeedyCGI documentation for details about configuring Speedy-
CGI. We recommend the usage of the -r and -t switch, so you are able to control the
number of parallel living speedy processes, e.g.

#!/usr/local/bin/speedy -- -r30 -t120

Each speedy process now answeres a maximum of 30 requests and then dies. If a
process is idle for longer than 120 secs it dies also.
CGI::CIPP

CIPP Configuration Apache::CIPP

Apache::CIPP

If you use the Apache::CIPP module you have all advantages of a CGI::CIPP /
CGI::SpeedyCGI configuration, particular regarding the persistence stuff. Also
configuration of Apache::CIPP is simplier, because you put all required parameters
into the Apache configuration file(s). All above mentioned CGI::CIPP configura-
tion tasks to make CGI::CIPP work as transparently as possible are needless in a
Apache::CIPP environment.

Apache::CIPP needs the Apache module mod_perl to run, so first fetch mod_perl
and Apache::CIPP from your next CPAN mirror and install them.

This is a example of the section you have to add to your httpd.conf:

<Location ~ “.*\.cipp“>
SetHandler “perl-script“
PerlHandler Apache::CIPP

PerlSetVar cache_dir /tmp/cipp_cache
PerlSetVar debug 1
PerlSetVar lang DE
PerlSetVar databases test, foo
PerlSetVar default_db test

PerlSetVar db_test_data_source dbi:mysql:test
PerlSetVar db_test_user dbuser
PerlSetVar db_test_password dbpassword
PerlSetVar db_test_auto_commit 1

PerlSetVar db_foo_data_source dbi:Oracle:foo
PerlSetVar db_test_user dbuser2
PerlSetVar db_test_password dbpassword2
PerlSetVar db_test_auto_commit 1
</Location>

The regular expression inside the <Location> tag matches all files with the suf-
fix .cipp, independent from the location on your server. Due to this you are able to
place your CIPP pages everywhere you want. So mixing of .cipp and other files is
Apache::CIPP 23

no problem with this configuration.

24
CIPP Configuration Apache::CIPP

Apache::CIPP Parameters are very similar to the CGI::CIPP parameters:

The following four parameters must be specified for each database you listed in the
databases parameter. Replace the * with the appropriate database name.

cache_dir This names the directory where CGI::CIPP can
store the preprocessed CIPP programs. If the direc-
tory does not exist it will be created. Aware, the the
directory must have write access for the user under
which your webserver software is running.

debug If you set the debug parameter to non zero, each
request to Apache::CIPP will be logged in the
apache error logfile, together with some informa-
tion about the internal state of the caches.

databases This parameter lists the CIPP internal names of all
your database configurations. The list is comma
separated, whitspace is ignored.

default_database This takes the name of the default database. This
database is always used, if a CIPP SQL command
ommits the DB parameter. The value passed here
must be a defined value in the databases
parameter.

lang CIPP has multilanguage support for its error mes-
sages, actually english (’EN’) and german (’DE’)
are supported.

db_*_data_source This must be a DBI conforming data source string.
Please refer to the DBI documentation for details
about this.

db_*_username This is the username CIPP uses to connect to the
database

db_*_password This password is used for the database user.

db_*_auto_commit This parameter sets the initial state of the Auto-
Commit flag. Please refer to the description of the
<?AUTOCOMMIT> command or the DBI docu-
mentation for details about AutoCommit.
Apache::CIPP

CHAPTER 3 CIPP Command
Reference
This chapter describes all CIPP commands in alphabetical order. Each reference
contains syntax notation, textual description and examples for each command.

Command Groups

For better overview the following table lists all CIPP commands grouped by type:

Variables and Scoping

VAR Definition of a variable

MY Declaring a private (block local) variable

BLOCK Creation of a block context to limit the scope of
private variables
Command Groups 25

26
CIPP Command Reference <?>

Control Structures

Import

Exception Handling

IF Conditional execution of a block

ELSIF Subsequent conditional execution

ELSE Alternative execution of a block

WHILE Loop with condition check before first iteration

DO Loop with condition check after first iteration

FOREACH Loop iterating with a variable over a list

PERL Insertion of pure Perl code

SUB Definition of a Perl subroutine

INCLUDE Insertion of a CIPP Include file in the actual CIPP
code

MODULE Definition of a CIPP Perl Module

REQUIRE Import a CIPP Perl Module

USE Import a standard Perl module

CONFIG Import a config file

TRY Secured execution of a block. Any exceptions
thrown in the encapsulated block are caught.

CATCH Execution of a block if a particular exception was
thrown in a preceding TRY block.

THROW Explicite creation of an exception.

LOG Write a entry in a logfile.
Command Groups

Command Groups <?>

SQL

URL- and Form Handling

HTML Tag Replacements

Interface

SQL Execution of a SQL statement

COMMIT Commit a transaction

ROLLBACK Rollback a transaction

AUTOCOMMIT Control of transaction behaviour

DBQUOTE Quoting of a variable for usage in a SQL statement

GETDBHANDLE Returns the internal DBI database handle

GETURL Creation of a CIPP object URL

URLENCODE URL encoding of a variable

HTMLQUOTE HTML encoding of a variable

HIDDENFIELDS Producing a number of hidden formular fields

A Replaces <A> tag

FORM Replaces <FORM> tag

IMG Replaces tag

OPTION Replaces <OPTION> tag, with sticky feature

INPUT Replaces <INPUT> tag, with sticky feature

TEXTAREA Replaces <TEXTAREA> tag

SELECT Replaces <SELECT> Tag, with sticky feature

INTERFACE Declaration of a CGI interface for a CIPP program

INCINTERFACE Declaration of a interface for CIPP Include

GETPARAM Recieving a non declared CGI input parameter
Command Groups 27

GETPARAMLIST Returns a list of all CGI input parameter names

SAVEFILE Storing a client side upload file

28
CIPP Command Reference <?>

Apache

Preprocessor

Debugging

APGETREQUEST Returns the internal Apache request object

APREDIRECT Redirects to another URL internally

!AUTOPRINT Controls automatic output of HTML code

!HTTPHEADER Dynamic generation of a HTTP header

!PROFILE Initiate generation of profiling code

DUMP Dumps preformatted contents of data structures
Command Groups

Alphabetical Reference <?#>

Alphabetical Reference

Type

Multi Line Comment

Syntax

<?#>
...
<?/#>

Description

This block command realizes a multiline comment. Simple comments are
introduced with a single # sign, so you can only comment one line with them.
All text inside a <?#> block will be treated as a comment and will be ignored.
Nesting of <?#> is allowed.

Example

This is a simple multi line comment.

<?#>
 This text will be ignored.
 All CIPP tags too.
 So this is no syntax error
 <?IF foo bar>
<?/#>

You may nest <?#> blocks:

<?#>
 bla foo
 <?#>
 foo bar
 <?/#>
<?/#>

#

Alphabetical Reference 29

30
CIPP Command Reference <?A>

Type

HTML Tag Replacement

Syntax

<?A HREF=hyperlinked_object_name[#anchor]
 [additional_<A>_parameters ...] >
...
<?/A>

Description

This command replaces the <A> HTML tag. You will need this in a new.spirit
environment to set a link to a CIPP CGI or HTML object.

Parameter

HREF
This parameter takes the name of the hyperlinked object. You may
optionally add an anchor (which should be defined using <A NAME> in the
referred page) using the # character as a delimiter.

This paremeter is expected as an URL in CGI::CIPP or Apache::CIPP
environments and in dot-separated object notation in a new.spirit
environment.

additional_<A>_parameters
All additional parameters are taken into the generated <A> tag.

Example

Textual link to ’MSG.Main’, in a new.spirit environment.

<?A HREF=“MSG.Main“>Back to the main menu<?/A>

Image link to ’/main/menu.cgi’, in a CGI::CIPP or Apache::CIPP environ-
ment:

A

Alphabetical Reference

<?A HREF=“/main/menu.cgi“>
<?IMG SRC=“/images/logo.gif“ BORDER=0>

<?/A>

Alphabetical Reference <?APGETREQUEST>

Type

Apache

Syntax

<?APGETREQUEST [MY] VAR=request_variable >

Description

This command is only working if CIPP is used as an Apache module.

It returns the internal Apache request object, so you can use Apache specific
features.

Parameter

VAR
This is the variable where the request object will be stored.

MY
If you set the MY switch, the created variable will be declared using ’my’.
Its scope reaches to the end of the block which surrounds the
APGETREQUEST command.

Example

The Apache request object will be stored in the implicitely declared variable
$ar.

<?APGETREQUEST MY VAR=$ar>

APGETREQUEST
Alphabetical Reference 31

32
CIPP Command Reference <?APREDIRECT>

Type

Apache

Syntax

<?APREDIRECT URL=new_URL >

Description

This command is only working if CIPP is used as an Apache module.

It results in an internal Apache redirect. That means, the new url will be ’exe-
cuted’ without notifying the client about this.

Parameter

URL
This expression is used for the new URL.

Note:

The program which uses <?APREDIRECT> should not produce any output,
otherwise this may confuse the webserver or the client, if more then one
HTTP header is sent. So you should use <?AUTOPRINT OFF> at the top of
the program to circumvent that.

Example

This commands redirect internally to the homepage of the corresponding web-
site:

<?AUTOPRINT OFF>
<?APREDIRECT URL=“/“>

APREDIRECT
Alphabetical Reference

Alphabetical Reference <?AUTOCOMMIT>

Type

SQL

Syntax

<?AUTOCOMMIT (ON | OFF)
 [DB=database_name]
 [DBH=database_handle]
 [THROW=exception] >

Description

The <?AUTOCOMMIT> command corresponds directly to the underlying DBI
AutoCommit mechanism.

If AutoCommit is activated each SQL statement will implicitely be executed
in its own transaction. Think of a <?COMMT> after each statement. Explicite
use of <?COMMIT> or <?ROLLBACK> is forbidden in AutoCommit mode.

If AutoCommit is deactivated you have to call <?COMMIT> or <?ROLL-
BACK> yourself. CIPP will rollback any uncommited open transactions at the
end of the program.

Parameter

ON|OFF
Switch AutoCommit modus either on or off.

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in the
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

DBH
Use this option to pass an existing DBI database handle, which should used

AUTOCOMMIT
Alphabetical Reference 33

for this SQL command. You can’t use the DBH option in conjunction with
DB.

34
CIPP Command Reference <?AUTOCOMMIT>

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is
autocommit.

If the underlying database is not capable of transactions (e.g. MySQL)
setting AutoCommit to ON will throw an exception.

Example

Switch AutoCommit on for the database ’foo’.

<?AUTOCOMMIT ON DB=“foo“>

Switch AutoCommit off for the database ’bar’ and throw the user defined
exception ’myautocommit’ on failure.

<?AUTOCOMMIT OFF DB=“bar“ THROW=“myautocommit“>
Alphabetical Reference

Alphabetical Reference <?!AUTOPRINT>

Type

Preprocessor

Syntax

<?!AUTOPRINT OFF>

Description

With the <?!AUTOPRINT OFF> command the preprocessor can be advised
to suppress the generation of print statements for non CIPP blocks. The
default setting is ON and it is only possible to switch it OFF and not the other
way around.

In earlier versions of CIPP this command was named <?AUTOPRINT>. This
notation is depreciated, but will work for compatability reasons.

Parameter

OFF
Automatic generation of print statements for non CIPP blocks will be
deactivated.

Note

This is a preprocessor command. Please read the chapter about preprocessor
commands for details about this.

You should use this command at the very top of your program file. CIPP will
not generate any HTTP headers for you, if you use <?!AUTOPRINT OFF>,
so you have to do this on your own. If you only want to generate a special
HTTP header, use <?!HTTPHEADER> instead.

The „CIPP Introduction“ Chapter contains a paragraph about CIPP Preproces-
sor Commands. Please refer to this discussion for details of <?!AUTO-
PRINT>.

!AUTOPRINT
Alphabetical Reference 35

36
CIPP Command Reference <?!AUTOPRINT>

Example

This program sends a GIF image to the client, after generating the proper
HTTP header. (For another example, see <?APREDIRECT>)

<?AUTOPRINT OFF>
These lines will never be printed, they are fully
ignored!!!
<?PERL>
 my $file = “/tmp/image.gif“;
 my $size = -s $file;

 print “Content-type: image/gif\n“;
 print “Content-length: $size\n\n“;

 open (GIF, $file) or die “can’t open $file“;
 while (<GIF>) {
 print;
 }
 close GIF;
<?/PERL>
Alphabetical Reference

Alphabetical Reference <?BLOCK>

Type

Variables and Scoping

Syntax

<?BLOCK>
...
<?/BLOCK>

Description

Use the <?BLOCK> command to divide your program into logical blocks to
control variable scoping. Variables declared with <?MY> inside a block are
not valid outside.

Example

The variable $example does not exist beyond the block.

<?BLOCK>
 <?MY $example>
 $example is known.
<?/BLOCK>

$example does not exist here. This will
result in a Perl compiler error, because
$example is not declared here.

BLOCK
Alphabetical Reference 37

38
CIPP Command Reference <?CATCH>

Type

Exception Handling

Syntax

<?CATCH [THROW=exception]
 [MY]
 [EXCVAR=variable_for_exception]
 [MSGVAR=variable_for_error_message] >
...
<?/CATCH>

Description

Typically a <?CATCH> block follows after a <?TRY> block. You can process
one particular or just any exception with the <?CATCH> block.

<?CATCH> and <?TRY> has to be placed inside the same block.

See the description of <?TRY> for details about the CIPP exception handling
mechanism.

Parameter

THROW
If this parameter is omitted, all exceptions will be processed here.
Otherwise the <?CATCH> block is executed only if the appropriate
exception was thrown.

EXCVAR
Names the variable, where the exception identifier should be stored in.
Usefull if you use <?CATCH> for a generic exception handler and omitted
the THROW parameter.

MSGVAR
Name the variable, where the error message should be stored in.

MY

CATCH
Alphabetical Reference

If you set the MY switch the created variable will be declared using ’my’. Its
scope reaches to the end of the block which surrounds the <?CATCH>
command.

Alphabetical Reference <?CATCH>

Example

We try to insert a row into a database table, which has a primary key defined,
and commit the transcation. We catch two exceptions: the possible primary
key constraint violation and a possible commit exception, maybe the database
is not capable of transactions.

<?TRY>
 <?SQL SQL=“insert into persons
 (firstname, lastname)
 values (’John’, ’Doe’)“><?/SQL>
 <?COMMIT>
<?/TRY>

<?CATCH THROW=sql MY MSGVAR=$message>
 <?LOG MSG=“Can’t insert data: $message“
 TYPE=“database“>
<?/CATCH>

<?CATCH THROW=commit MSGVAR=$message>
 <?LOG MSG=“COMMIT rejected: $message“
 TYPE=“database“>
<?/CATCH>
Alphabetical Reference 39

40
CIPP Command Reference <?COMMIT>

Type

SQL

Syntax

<?COMMIT [DB=database_name]
 [DBH=database_handle]
 [THROW=exception] >

Description

The <?COMMIT> command concludes the actual transaction and makes all
changes to the database permanent.

Using <?COMMIT> in <?AUTOCOMMIT ON> mode is not possible.

If you are not in <?AUTOCOMMIT ON> mode a transaction begins with the
first SQL statement and end either with a <?COMMIT> or <?ROLLBACK>
command.

Parameter

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in the
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

DBH
Use this option to pass an existing DBI database handle, which should used
for this SQL command. You can’t use the DBH option in conjunction with
DB.

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is

COMMIT
Alphabetical Reference

commit.

If the underlying database is not capable of transactions (e.g. MySQL)
execution of this command will throw an exception.

Alphabetical Reference <?COMMIT>

Example

We insert a row into a database table and commit the change immediately. We
throw a user defined exeption, if the commit fails. So be safe we first disable
AutoCommiting.

<?AUTOCOMMIT OFF>
<?SQL SQL=“insert into foo (num, str)
 values (42, ’bar’);“>
<?/SQL>
<?COMMIT THROW=“COMMIT_Exception“>
Alphabetical Reference 41

42
CIPP Command Reference <?CONFIG>

Type

Import

Syntax

<?CONFIG NAME=config_file
 [RUNTIME] [NOCACHE]
 [THROW=exception] >

Description

The <?CONFIG> command reads a config file. This is done via a mechanism
similar to Perl’s require, so the config file has to be pure Perl code defining
global variables.

<?CONFIG> ensures a proper load of the configuration file even in persistent
Perl environments.

In contrast to “require“ <?CONFIG> will reload a config file when the file
was altered on disk. Otherwise the file will only be loaded once.

Parameter

NAME
This is the name of the config file, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

RUNTIME
This switch makes sense only in a new.spirit environment. If you set it the
NAME parameter will be resolved at runtime, so it can contain variables.
new.spirit will not check the existance of the file in this case. Normally
you’ll get a CIPP error message, if the adressed file does not exist.

In CGI::CIPP and Apache::CIPP environments the NAME parameter will
always be resolved at runtime.

CONFIG
Alphabetical Reference

Alphabetical Reference <?CONFIG>

NOCACHE
This switch is useful in persistant Perl environments. It forces <?CONFIG>
to read the config file even if it did not change on disk. You’ll need this if
your config file does some calculations based on the request environment,
e.g. if the value of some variables depends on the clients user agent.

THROW
With this parameter you can provide a user defined exception to be thrown
on failure. The default exception thrown by this statement is config.

An exception will be thrown, if the config file does not exist or is not
readable.

Example

Load of the configuration file “/lib/general.conf“, with disabled cache, used in
CGI::CIPP or Apache::CIPP environment:

<?CONFIG NAME=“/lib/general.conf“ NOCACHE>

Load of the configuration file object x.custom.general in a new.spirit environ-
ment:

<?CONFIG NAME=“x.custom.general“>

Load of a config file with a name determined at runtime, in a new.spirit envi-
ronment, throwing “myconfig“ on failure:

<?CONFIG NAME=“$config_file“ RUNTIME
 THROW=“myconfig“>
Alphabetical Reference 43

44
CIPP Command Reference <?DBQUOTE>

Type

SQL

Syntax

<?DBQUOTE VAR=variable
 [MY]
 [DBVAR=quoted_result_variable]
 [DB=database_name]
 [DBH=database_handle] >

Description

<?SQL> (and DBI) has a nice way of quoting parameters to SQL statements
(called parameter binding). Usage of that mechanism is generally recom-
mended (see <?SQL> for details). However if you need to construct your own
SQL statement, <?DBQUOTE> will let you do so.

<?DBQUOTE> will generate the string representation of the given scalar vari-
able as fit for an SQL statement. That is, it takes care of quoting special char-
acteres.

Parameter

VAR
This is the scalar variable containing the parameter you want to be quoted.

DBVAR
This optional parameters takes the variable where the quoted content should
be stored. The surrounding ’ characters are part of the result, if the variable
is not undef. A value of undef will result in NULL (without the surrounding
’), so the quoted variable can be placed directly in a SQL statement.

If you ommit DBVAR, the name of the target variable is computed by
placing the prefix ’db_’ in front of the VAR name.

MY
If you set the MY switch the created variable will be declared using ’my’. Its

DBQUOTE
Alphabetical Reference

scope reaches to the end of the block which surrounds the <?DBQUOTE>
command.

Alphabetical Reference <?DBQUOTE>

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in the
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

DBH
Use this option to pass an existing DBI database handle, which should used
for this SQL command. You can’t use the DBH option in conjunction with
DB.

Example

This quotes the variable $name, the result will be stored in the just declared
variable $db_name.

<?DBQUOTE MY VAR=“$name“>

This quotes $name, but stores the result in the variable $quoted_name.

<?DBQUOTE VAR=“$name“ MY DBVAR=“$quoted_name“>

The quoted variable can be used in a SQL statement this way:

<?SQL SQL=“insert into persons (name)
 values ($quoted_name)“>
Alphabetical Reference 45

46
CIPP Command Reference <?DO>

Type

Control Structure

Syntax

<?DO>
...
<?/DO COND=condition >

Description

The <?DO> block repeats executing the contained code as long as the condi-
tion evaluates true. The condition is checked afterwards. That means that the
block will always be executed at least once.

Parameter

COND
This takes a Perl condition. As long as this condition is true the <?DO>
block will be repeated.

Example

Print “Hello World“ $n times. (note: for n=0 and n=1 you get the same result)

<?DO>
 Hello World

<?/DO COND=“--$n > 0“>

DO
Alphabetical Reference

Alphabetical Reference <?DUMP>

Type

Debugging

Syntax

<?DUMP $var_1 ... $var_n>

Description

The <?DUMP> command dumps the contents of the given variables using
Data::Dumper, inside of a HTML <pre></pre> block.

Parameter

$var_1 .. $var_n
The contents of this variables are dumped to STDOUT.

Example

<?DUMP $hash_ref $list_ref>

DUMP
Alphabetical Reference 47

48
CIPP Command Reference <?ELSE>

Type

Control Structure

Syntax

<?ELSE>

Description

<?ELSE> closes an open <?IF> or <?ELSIF> conditional block and opens
a new block (which is later terminated by <?/IF>). The block is only exe-
cuted if the condition of the preceding block was evaluated and failed.

<?MY> variables are only visible inside this block.

(Or short: it works as you would expect.)

Example

Only Larry gets a personal greeting message:

<?IF COND=“$name eq ’Larry’“>
 Hi Larry, you’re welcome!
<?ELSE>
 Hi Stranger!
<?/IF>

ELSE
Alphabetical Reference

Alphabetical Reference <?ELSIF>

Type

Control Structure

Syntax

<?ELSIF COND=condition >

Description

<?ELSIF> closes an open <?IF> or <?ELSIF> conditional block and
opens a new block. The condition is only evaluated if the condition of the pre-
ceding block was evaluated and failed.

<?MY> variables are only visible inside this block.

(Or short: it works as you would expect.)

Parameter

COND
Takes the Perl condition.

Example

Larry and Linus get personal greeting messages:

<?IF COND=“$name eq ’Larry’“>
 Hi Larry, you’re welcome!
<?ELSIF COND=“$name eq ’Linus’“>
 Hi Linus, you’re velkomma!
<?ELSE>
 Hi Stranger!
<?/IF>

ELSIF
Alphabetical Reference 49

50
CIPP Command Reference <?FOREACH>

Type

Control Structure

Syntax

<?FOREACH [MY] VAR=running_variable
 LIST=perl_list >
...
<?/FOREACH>

Description

<?FOREACH> corresponds directly the Perl foreach command. The running
variable will iterate of the list, executing the enclosed block for each value of
the list.

Parameter

VAR
This is the scalar running variable.

LIST
You can write any Perl list here, e.g. using the bracket notation or pass a
array variable using the @ notation.

MY
If you set the MY switch the created running variable will be declared using
’my’. Its scope reaches to the end of the block which surrounds the
<?FOREACH> command.

Note: this is a slightly different behaviour compared to a Perl “foreach my
$var (@list)“ command, where the running variable $var is valid only
inside of the foreach block.

FOREACH
Alphabetical Reference

Alphabetical Reference <?FOREACH>

Example

Counting up to ’three’:

<?FOREACH MY VAR=“$cnt“
 LIST=“(’one’, ’two’, ’three’)“>
 $cnt
<?/FOREACH>
Alphabetical Reference 51

52
CIPP Command Reference <?FORM>

Type

HTML Tag Replacement

Syntax

<?FORM ACTION=cgi_file
 [additional_<FORM>_parameters ...] >
...
<?/FORM>

Description

<?FORM> generates a HTML <FORM> tag, setting the ACTION option to the
appropriate URL. The request METHOD defaults to POST if no other value is
given.

Parameter

ACTION
This is the name of the form target CGI program, expected as an URL in
CGI::CIPP or Apache::CIPP environments and in dot-separated object
notation in a new.spirit environment.

additional_<FORM>_parameters
All additional parameters are taken over without changes into the produced
<FORM> tag. If you ommit the METHOD parameter it will default to POST.

Example

Creating a named form with a submit button, pointing to the CGI object
“x.login.start“, in a new.spirit environment:

<?FORM ACTION=“x.login.start“ NAME=“myform“>
<?INPUT TYPE=SUBMIT VALUE=“ Start “>
<?/FORM>

FORM
Alphabetical Reference

Alphabetical Reference <?FORM>

Creating a similar form, but the action is written as an URL because we are in
CGI::CIPP or Apache::CIPP environment:

<?FORM ACTION=“/login/start.cgi“ NAME=“myform“>
<?INPUT TYPE=SUBMIT VALUE=“ Start “>
<?/FORM>
Alphabetical Reference 53

54
CIPP Command Reference <?FORM>

Type

SQL

Syntax

<?GETDBHANDLE [DB=database_name] [MY]
 VAR=handle_variable >

Description

This command returns a reference to the internal Perl database handle, which
is the object references returned by DBI->connect.

With this handle you are able to perform DBI specific functions which are
currently not directly available through CIPP.

Parameter

VAR
This is the variable where the database handle will be stored.

MY
If you set the MY switch the created variable will be declared using ’my’. Its
scope reaches to the end of the block which surrounds the
<?GETDBHANDLE> command.

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in the
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

Example

We get the database handle for the database object ’x.Oracle’ in a new.spirit
environment and perform a select query using this handle.

GETDBHANDLE
Alphabetical Reference

Alphabetical Reference <?FORM>

Ok, you simply can do this with the <?SQL> command, but now you can see
how much work is done for you through CIPP :)

<?GETDBHANDLE DB=“MSG.Oracle“ MY VAR=“$dbh“>

<?PERL>
 my $sth = $dbh->prepare (qq{
 select n,s from TEST_table
 where n between 10 and 20
 });
 die “my_sql\t$DBI::errstr“ if $DBI::errstr;

 $sth->execute;
 die “my_sql\t$DBI::errstr“ if $DBI::errstr;

 my ($n, $s);
 while (($n, $s) = $sth->fetchrow) {
 print “n=$n s=$s
\n“;
 }
 $sth->finish;
 die “my_sql\t$DBI::errstr“ if $DBI::errstr;

<?/PERL>
Alphabetical Reference 55

56
CIPP Command Reference <?GETPARAM>

Type

Interfaces

Syntax

<?GETPARAM NAME=parameter_name
 [MY] [VAR=content_variable] >

Description

With this command you can explicitely get a CGI parameter. This is useful if
your CGI program uses dynamically generated parameter names, so you are
not able to use <?INTERFACE> for them.

Refer to <?INTERFACE> to see how easy it is to handle standard CGI input
parameters.

Parameter

NAME
Identifier of the CGI input parameter

VAR
This is the variable where the content of the CGI parameter will be stored.
This can be either a scalar variable (indicated through a $ sign) or an array
variable (indicated through a @ sign).

MY
If you set the MY switch the created variable will be declared using ’my’. Its
scope reaches to the end of the block which surrounds the <?GETPARAM>
command.

Example

We recieve two parameters, one staticly named parameter and one scalar
parameter, which has a dynamic generated identifier.

<?GETPARAM NAME=“listparam“ MY VAR=“@list“>

GETPARAM
Alphabetical Reference

<?GETPARAM NAME=“scalar$name“ MY VAR=“$scalar“>

Alphabetical Reference <?GETPARAMLIST>

Type

Interfaces

Syntax

<?GETPARAMLIST [MY] VAR=variable >

Description

This command returns a list containing the identifiers of all CGI input param-
eters.

Parameter

VAR
This is the variable where the identifiers of all CGI input parameters will be
stored in. It must be an array variable, indicated through a @ sign.

MY
If you set the MY switch the created list variable will be declared using
’my’. Its scope reaches to the end of the block which surrounds the
<?GETPARAMLIST> command.

Example

The list of all CGI input parameter identifiers will be stored into the array
variable @input_param_names.

<?GETPARAMLIST MY VAR=“@input_param_names“>

GETPARAMLIST
Alphabetical Reference 57

58
CIPP Command Reference <?GETURL>

Type

URL and Form Handling

Syntax

<?GETURL NAME=object_file
 [MY] VAR=target_variable
 [RUNTIME] [THROW=exception] >
 [PARAMS=parameters_variables]
 [PAR_1=value_1 ... PAR_n=value_n] >

Description

This command returns a URL, optionally with parameters. In a new.spirit
environment you use this to resolve the dot-separated object name to a real
life URL.

In CGI::CIPP and Apache::CIPP environments this is not necessary, because
you work always with real URLs. Nevertheless it also useful there, because its
powerfull possibilities of generating parmeterized URLs.

Parameter

NAME
This is the name of the specific file, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

VAR
This is the scalar variable where the generated URL will be stored in. In
earlier versions of CIPP this option was named URLVAR. The usage of the
URLVAR notation is depreciated, but it works for compatibility reasons. To
prevent from logical errors CIPP throws an error if you use URLVAR and
VAR inside of one command (e.g. to create an URL which contains a
parameter called VAR or URLVAR).

URLVAR

GETURL
Alphabetical Reference

Depreciated. See description of VAR.

Alphabetical Reference <?GETURL>

MY
If you set the MY switch the created variable will be declared using ’my’. Its
scope reaches to the end of the block which surrounds the <?GETURL>
command.

RUNTIME
This switch makes only sense in a new.spirit environment. The NAME
parameter will be resolved at runtime, so it can contain variables. CIPP will
not check the existance of the file in this case. Normally you get a CIPP
error message, if the adressed file does not exist.

In CGI::CIPP and Apache::CIPP environments the NAME parameter will
always be resolved at runtime.

THROW
With this parameter you can define the exception to be thrown on failure.
The default exception thrown by this statement is geturl.

An exception will be thrown, if the adressed file does not exist.

PARAMS
This takes a comma separated list of parameters, which will be encoded and
added to the generated URL. You may pass scalar variables (indicated
through the $ sign) and also array variables (indicated through the @ sign).

With the PARAMS option you can only pass parameters whose values are
stored in variables with the same name (where case is significant). The
variables listed in PARAMS will be treated case sensitive.

PAR_1..PAR_n
Any additional parameters to <?GETURL> are interpreted as named
parameters for the URL. You can pass scalar and array values this way
(using $ and @). Variables passed this way are seen by the called program
as lower case written variable names, no matter which case you used in
<?GETURL>.

Note

It is highly recommended to use lower case variable names. Due to historical
reasons CIPP converts parameter names to lower case without telling you
Alphabetical Reference 59

about it. If this ever gets “fixed“ and you have uppercase latters, your code
will break. So, use lowercase.

60
CIPP Command Reference <?GETURL>

Example

We are in a new.spirit environment and produce a tag, pointing to a
new.spirit object (btw: the easiest way of doing this is the <?IMG> com-
mand):

<?GETURL NAME=“x.Images.Logo“ MY VAR=$url>

Now we link the CGI script “/secure/messager.cgi“ in a CGI::CIPP or
Apache::CIPP environment. We pass some parameters to this script. (Note the
case sensitivity of the parameter names, we really should use lower case vari-
ables all the time!)

<?VAR MY NAME=$Username>hans<?/VAR>
<?VAR MY NAME=@id>(1,42,5)<?/VAR>
<?GETURL NAME=“/secure/messager.cgi“ MY VAR=$url
 PARAMS=“$Username, @id“ EVENT=delete>
delete messagse

The CGI program “/secure/messager.cgi“ recieves the parameters this way
(note that the $Username parameter is seen as $Username, but EVENT is
seen as $event). If you find this confusing, use always lower case variable
names.

<?INTERFACE INPUT=“$event, $Username, @id“>
<?IF COND=“$event eq ’delete’“>
 <?MY $id_text>
 <?PERL>$id_text = join (“, “ @id)<?PERL>
 You are about to delete
 $username’s ID’s?: $id_text

<?/IF>
Alphabetical Reference

Alphabetical Reference <?HIDDENFIELDS>

Type

URL and Form Handling

Syntax

<?HIDDENFIELDS [PARAMS=parameter_variables]
 [PAR_1=value_1 ... PAR_n=value_n] >

Description

This command produces a number of <INPUT TYPE=HIDDEN> HTML
tags, one for each parameter you specify. Use this to transport a bunch of
parameters via a HTML form. This command takes care of special characters
in the parameter values and quotes them if necessary.

Parameter

PARAMS
This takes a comma separated list of parameters, which will be encoded and
transformed to a <INPUT TYPE=HIDDEN> HTML tag. You may pass
scalar variables (indicated through the $ sign) and also array variables
(indicated through the @ sign).

With the PARAMS option you can only pass parameters whose values are
stored in variables with the same name (where case is significant).

PAR_1..PAR_n
Any additional parameters to <?HIDDENFIELDS> are interpreted as
named parameters. You can pass scalar and array values this way (using $
and @). Variables passed this way are seen by the called program as lower
case written variable names, no matter which case you used in
<?HIDDENFIELDS>.

HIDDENFIELDS
Alphabetical Reference 61

62
CIPP Command Reference <?HIDDENFIELDS>

Example

This is a form in a new.spirit environment, pointing to the object
“x.secure.messager“. The two parameters $username and $password are
passed via PARAMS, the parameter “event“ is set to “show“.

<?FORM ACTION=“x.secure.messager“>
<?HIDDENFIELDS PARAMS=“$username, $password“
 event=“show“>
<INPUT TYPE=SUBMIT VALUE=“show messages“>
<?/FORM>
Alphabetical Reference

Alphabetical Reference <?HTMLQUOTE>

Type

URL and Form Handling

Syntax

<?HTMLQUOTE VAR=variable_to_encode
 [MY] HTMLVAR=target_variable >

Description

This command quotes the content of a variable, so that it can be used inside a
HTML option or <TEXTAREA> block without the danger of syntax clashes.
The following conversions are done in this order:

 & => &
 < => <
 “ => "

Parameter

VAR
This is the scalar variable containing the parameter you want to be quoted.

HTMLVAR
This non-optional parameter takes the variable where the quoted content
will be stored.

MY
If you set the MY switch the created variable will be declared using ’my’. Its
scope reaches to the end of the block which surrounds the
<?HTMLQUOTE> command.

Example

We produce a <TEXTAREA> tag with a quoted instance of the variable $text.
Note: you can also use the <?TEXTAREA> command for this purpose.

<?HTMLQUOTE VAR=“$text“ MY HTMLVAR=“$html_text“>

HTMLQUOTE
Alphabetical Reference 63

<TEXTAREA NAME=“text“>$html_text</TEXTAREA>

64
CIPP Command Reference <?!HTTPHEADER>

Type

Preprocessor

Syntax

<?!HTTPHEADER [MY] VAR=http_header_hash_ref >
 # Perl Code which modifies the
 # http_header_hash_ref variable
<?/!HTTPHEADER>

Description

Use this command, if you want to modify the standard HTTP header
response. CIPP generates by default a simple HTTP header of this form:

 Content-type: text/html\n\n

In a new.spirit environment you can define a project wide default HTTP
header extension, e.g. „Pragme: no-cache“, or something similar.

If you want to modify the HTTP header at runtime, you can use this
command. The <?!HTTPHEADER> command switches to Perl context, so
you write Perl code inside the block. The variable you declared with the
VAR option is accessable inside this block and will contain a reference to a
hash containing the default HTTP header tags. Your Perl code now can
delete, add or modifiy HTTP header tags.

But be careful: because <?!HTTPHEADER> is a preprocessor command,
the position of the <?!HTTPHEADER> command inside your CIPP
program (even if you use it inside an Include), does not indicate the time,
on which your HTTP header code is executed.

CIPP inserts the code you write in the <?!HTTPHEADER> block at the top
of the generated CGI code, so it is executed before any other code you
wrote in you CIPP program or Include, because the HTTP header must
appear before any content.

!HTTPHEADER
Alphabetical Reference

Alphabetical Reference <?!HTTPHEADER>

So it is not possible to access any lexically scoped variables declared
outside the <?!HTTPHEADER> block within the block. Usually you
statically add or delete HTTP header fields. Your code may depend on CGI
environment variables, or on a result of a SQL query, but that’s it. If you
want to access configuration variables, you must use the <?CONFIG>
command inside your <?!HTTPHEADER> block.

Note

This command is not implemented for Apache::CIPP and CGI::CIPP environ-
ments, but you can use it with new.spirit .

Parameter

VAR
The actual HTTP header will be assigned to this variable, as a reference to a
hash. This keys of this hash are the HTTP header tags.

MY
If you set the MY switch the created variable will be declared using ’my’. Its
scope reaches to the end of the <?!HTTPHEADER> block .

Example

A HTTP header is created, which tells proxies how long they may cache the
content of the produces HTML page.

<?!HTTPHEADER MY VAR=“$http“>
 # delete a Pragma Tag (may be defined
 # globally in a new.spirit environment)
 delete $http->{Pragma};

 # read a global config
 <?CONFIG NAME=“x.global“>

 # get cache time
 my $cache_time = $global::cachable_time || 1200;

 # set Cache-Control header tag
 $http->{’Cache-Control’} =
Alphabetical Reference 65

 “max-age=$cache_time, public“;
<?!/HTTPHEADER>

66
CIPP Command Reference <?IF>

Type

Control Structure

Syntax

<?IF COND=condition >
...
[<?ELSIF COND=condition >]
...
[<?ELSE>]
...
<?/IF>

Description

The <?IF> command executes the enclosed block if the condition is true.
<?ELSE> and <?ELSIF> can be used inside an <?IF> block in the com-
mon manner.

Parameter

COND
This takes a Perl condition. If this condition is true, the code inside the
<?IF> block is executed.

Example

Only Larry gets a greeting message here.

<?IF COND=“$name eq ’Larry’“>
 Hi Larry!
<?/IF>

IF
Alphabetical Reference

Alphabetical Reference <?IMG>

Type

HTML Tag Replacement

Syntax

<?IMG SRC=image_file
 [additional__parameters ...] >

Description

A HTML Tag will be generated, whoms SRC option points to the
appropriate image URL.

Parameter

SRC
This is the name of the image, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

additional__parameters
All additional parameters are taken without changes into the produced
 tag.

Example

In a new.spirit environment we produce a image link to another page, setting
the border to 0.

<?A HREF=“x.main.menu“>
<?IMG SRC=“x.images.logo“ BORDER=0>
<?/A>

In CGI::CIPP or Apache::CIPP environment we provide an URL instead of a
dot-separated object name.

<?A HREF=“/main/menu.cgi“>
<?IMG SRC=“/images/logo.jpg“ BORDER=0>

IMG
Alphabetical Reference 67

<?/A>

68
CIPP Command Reference <?INCINTERFACE>

Type

Interface

Syntax

<?INCINTERFACE [INPUT=list_of_variables]
 [OPTIONAL=list_of_variables
 [NOQUOTE=list_of_variables]
 [OUTPUT=list_of_variables] >

Description

Use this command to declare an interface for an Include file. You can use this
inside the Include file. In order to declare the interface of a CGI file this, use
the <?INTERFACE> command.

You can declare mandatory and optional parameters. Parameters are always
identified by name, not by position like in many programming languages. You
can pass all types of Perl variables (scalars, arrays and hashes, also refer-
ences). Also you can specify output parameters, which are passed back to the
caller. Even these parameters are named, which requires some getting used to
for most people. However it is very useful. :)

All input parameters declared this way are visible as the appropriate variables
inside the Include file. They are always declared with my to prevent name
clashes with other parts of the program.

Parameter

All parameters of <?INCINTERFACE> expect a comma separated list of
variables. All Perl variable types are supported: scalars ($), arrays (@)and
hashes (%). Whitespaces are ignored. Read the note beneath the NOQUOTE
section about passing non scalar values to an Include.

Note: You have to use lower case variable names, because the <?INCLUDE>
command converts all variable names to lower case.

INPUT
This parameters takes the list of variables the caller must provide in his

INCINTERFACE
Alphabetical Reference

<?INCLUDE> command (mandatory parameters).

Alphabetical Reference <?INCINTERFACE>

OPTIONAL
The variables listed here are optional input parameters. They are always
declared with my and visible inside the Include, but are set to undef, if the
caller ommits them.

OUTPUT
If you want your Include to pass values back to the caller, list the
appropriate variables here. This variables are declared with my. Set them
everywhere in your Include, they will be passed back automatically.

Note: the name of the variable receiving the output from the include must
be different from the name of the output parameter. This is due to
restrictions of the internal implementation.

NOQUOTE
By default all input parameters are defined by assigning the given value
using double quotes. This means it is possible to pass either string constants
or string expressions to the Include, which are interpreted at runtime, in the
same manner. Often this is the behaviour you expect.

You have to list input (no output) parameters in the NOQUOTE parameter if
you want them to be interpreted as a real Perl expression, and not in the
string context (e.g. $i+1 will result in a string containing the value of $i
concatenated with +1 in a string context, but in an incremented $i
otherwise).

Note: Also you have to list all non-scalar and reference input parameters
here, because array, hash and reference variables are also computed inside a
string context by default, and this is usually not what you expect.

Note: Maybe this will change in future. Listing array and hash parameters
in NOQUOTE will be optional, the default behaviour for those variables will
change, so that they are not computed in string context by default.

Notes

The <?INCINTERFACE> command may occur several times inside one
Include file. The position inside the source code does not matter. All declara-
tions will be added to an interface accordingly.

If you ommit a <?INCINTERFACE> command inside your Include, its inter-
Alphabetical Reference 69

face is empty. That means, you cannot pass any parameters to it. If you try so
this will result in an error message at CIPP compile time.

70
CIPP Command Reference <?INCINTERFACE>

Example

This example declares an interface, expecting some scalars and an array. Note
the usage of NOQUOTE for the array input parameter. The Include also returns
a scalar and an array parameter.

<?INCINTERFACE INPUT=“$firstname, $lastname“
 OPTIONAL=“@id“
 OUTPUT=“$scalar, @list“
 NOQUOTE=“@id“>
...
<?PERL>
 $scalar=“returning a scalar“;
 @list= (“returning“, “a“, “list“);
<?/PERL>

The caller may use this <?INCLUDE> command. Note that all input parame-
ter names are converted to lower case.

<?INCLUDE NAME=“/include/test.inc“
 FIRSTNAME=“Larry“
 lastname=“Wall“
 ID=“(5,4,3)“
 MY
 $s=SCALAR
 @l=LIST>
Alphabetical Reference

Alphabetical Reference <?INCLUDE>

Type

Import

Syntax

<?INCLUDE NAME=include_name
 [input_parameter_1=Wert1 ...]
 [MY]
 [variable_1=output_parameter_1 ...] >

Description

Use Includes to divide your project into reusable pieces of code. Includes are
defined in separate files. They have a well defined interface due to the
<?INCINTERFACE> command. CIPP performs parameter checking for you
and complain about unknown or missing parameters.

The Include file code will be inserted at the same position you write
<?INCLUDE>, inside of a Perl block. Due to this variables declared inside
the Include are not valid outside.

Please refer to the <?INCINTERFACE> chapter to see how parameters are
processed by an Include.

Parameter

NAME
This is the name of the Include file, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

INPUT-PARAMETERS
You can pass parameters to the Include using the usual
PARAMETER=VALUE notation. Note that parameter names are converted
to lower case. For more details about Include input parameters refer to the
appropriate section of the <?INCINTERFACE> chapter.

OUTPUT-PARAMETERS

INCLUDE
Alphabetical Reference 71

You can recieve parameters from the Include using the notation

{$@%}variable=output_parameter

72
CIPP Command Reference <?INCLUDE>

Note that the name of the output parameters are automatically converted to
lower case. Note also that the caller must not use the same name like the
output parameter for the local variable which recieves the output parameter.
That means for the above notation that variable must be different from
output_parameter, ignoring the case.

For more details about Include output parameters refer to the appropriate
section of the <?INCINTERFACE> chapter.

MY
If you set the MY switch all created output parameter variables will be
declared using ’my’. Their scope reaches to the end of the block which
surrounds the <?INCLUDE> command.

Important note

The actual CIPP implementation does really include the Include code at the
position where the <?INCLUDE> command occurs. This affects variable
scoping. All variables visible at the callers source code where you write the
<?INCLUDE> command are also visible inside your Include. So you can use
these variables, although you never declared them inside your Include. Use of
this feature is discouraged, in fact you should avoid the usage of variables you
did not declared in your scope.

Short notation

In a new.spirit environment the <?INCLUDE> command can be abbreviated
in the following manner:

<?include_name
 [input_parameter_1=Wert1 ...]
 [MY]
 [variable_1=output_parameter_1 ...] >

Example

See example of <?INCINTERFACE>.
Alphabetical Reference

Alphabetical Reference <?INPUT>

Type

HTML Tag Replacement

Syntax

<?INPUT [NAME=parameter_name]
 [VALUE=parameter_value]
 [SRC=image_object]
 [TYPE=input_type] [STICKY[=sticky_var]]
 [additional_<INPUT>_parameters ...] >

Description

This generates a HTML <INPUT> tag where the content of the VALUE
option is escaped to prevent HTML syntax clashes. In case of TYPE=“radio“
or TYPE=“checkbox“ in conjunction with the STICKY Option, the state of
the input widget will be preserved.

Parameter

NAME
The name of the input widget.

VALUE
This is the VALUE of the corresponding <INPUT> tag. Its content will be
escaped.

SRC
This is the name of the image, expected as an URL in CGI::CIPP or
Apache::CIPP environments and in dot-separated object notation in a
new.spirit environment.

TYPE
Only the TYPEs „radio“ and „checkbox“ are specially handled when the
STICKY option is also given.

INPUT
Alphabetical Reference 73

74
CIPP Command Reference <?INPUT>

STICKY
If this option is set and the TYPE of the input widget is eiterh „radio“ or
„checkbox“ CIPP will generate the CHECKED option automatically, if the
value of the corresponding Perl variable (which is $parameter_name
for TYPE=“radio“ and @parameter_name for TYPE=“checkbox“)
equals to the VALUE of this widget. If you assign a value to the STICKY
option, this will be taken as the Perl variable for checking the state of the
widget. But the default behaviour of deriving the name from the NAME
option will fit most cases.

additional_<INPUT>_parameters
All additional parameters are taken without changes into the generated
<INPUT> tag.

Note

If you use the STICKY feature in conjuncion with checkboxes, please note
that the internal implementation may be ineffective, if you handle large check-
box groups. This is due the internal representation of the checkbox values as a
list, so a grep is neccesary to check, wheter a checkbox is checked or not. If
you feel uncomfortable about that, use a classic HTML <INPUT> tag, maybe
with a loop around it, and check state of the checkboxes using a hash.
Alphabetical Reference

Alphabetical Reference <?INPUT>

Example

We generate two HTML input fields, a simple text and a password field, both
initialized with some values. Also two checkboxes are generated, using the
STICKY feature to initalize their state genericly.

<?VAR MY NAME=$username>larry<?/VAR
<?VAR MY NAME=$password>this is my “password“<?/VAR>
<?INPUT TYPE=TEXT SIZE=40 VALUE=$username>
<?INPUT TYPE=PASSWORD SIZE=40 VALUE=$password>

<?VAR MY NAME=$check>42<?/VAR>
<?INPUT TYPE=CHECKBOX NAME=“check“ VALUE=“42“
 STICKY> 42
<?INPUT TYPE=CHECKBOX NAME=“check“ VALUE=“43“
 STICKY> 43

This will produce the following HTML code:

<INPUT TYPE=TEXT SIZE=40 VALUE=“larry“>
<INPUT TYPE=TEXT SIZE=40
 VALUE=“this ist my "password"“>

<INPUT TYPE=CHECKBOX NAME=“check“ VALUE=“42“
 CHECKED>
<INPUT TYPE=CHECKBOX NAME=“check“ VALUE=“43“>
Alphabetical Reference 75

76
CIPP Command Reference <?INTERFACE>

Type

Interface

Syntax

<?INTERFACE [INPUT=list_of_variables]
 [OPTIONAL=list_of_variables] >

Description

This command declares the interface of a CGI program. You can declare man-
datory and optional parameters. Parameters are always identified by their
name. You can recieve scalar and array parameters.

All input parameters declared this way are visible as the appropriate variables
inside the CGI program. They are always declared with my to prevent name
clashes with other parts of the program.

Using <?INTERFACE> is optional, if you are not in ’use strict’ mode. If you
ommit <?INTERFACE> all actual parameters are passed to your program, no
parameter checking is done in this case. But it is strongly recommended to use
<?INTERFACE> because CIPP checks the consistency of your CGI calls at
runtime.

If you are in ’use strict’ mode (which is the default), using <?INTERFACE>
is mandatory, because one cannot create lexical variables at runtime. They
must be declared in this manner, so CIPP can add the appropriate decalaration
statements to the generated source code.

Parameter

All parameters of <?INTERFACE> expect a comma separated list of vari-
ables. Scalars ($) and arrays (@) are supported. Whitespaces are ignored.

Note: It is recommended that you use lower case variable names for your CGI
interfaces, because some CIPP commands for generating URLs (e.g.
<?GETURL>) convert parameter names to lower case.

INPUT

INTERFACE
Alphabetical Reference

This parameters takes the list of variables the caller must pass to the CGI
program.

Alphabetical Reference <?INTERFACE>

OPTIONAL
The variables listed here are optional input parameters. They are always
declared with my and visible inside the program, but are set to undef, if
the caller ommits them.

Notes

The <?INTERFACE> command may occur several times inside a CGI pro-
gram, the position inside the source code does not matter. All declarations will
be added to an interface accordingly.

Example

We specify an interface for two scalars and an array.

<?INTERFACE INPUT=“$firstname, $lastname“
 OPTIONAL=“@id“>

A HTML form which adresses this CGI program may look like this (assuming
we are in a CGI::CIPP or Apache::CIPP environment).

<?VAR MY NAME=“@id“ NOQUOTE>(1,2,3,4)<?/VAR>

<?FORM ACTION=“/user/save.cgi“>
 <?HIDDENFIELDS PARAMS=“@id“>
 <P>firstname:
 <?INPUT TYPE=TEXT NAME=firstname>
 <P>lastname:
 <?INPUT TYPE=TEXT NAME=lastname>
<?/FORM>
Alphabetical Reference 77

78
CIPP Command Reference <?LOG>

Type

Exception Handling

Syntax

<?LOG MSG=error_message
 [TYPE=type_of_message]
 [FILENAME=special_logfile]
 [THROW=exception] >

Description

The <?LOG> command adds a line to the project specific logfile, if no other
filename is specified. In new.spirit environments the default filename of the
logfile is prod/log/cipp.log. In CGI::CIPP and Apache::CIPP environ-
ments messages are written to /tmp/cipp.log (c:\tmp\cipp.log
under Win32) by default.

Log file entries contain a timestamp, client IP adress, a message type and the
message itself.

Parameter

MSG
This is the message.

TYPE
You can use the TYPE parameter to speficy a special type for this message.
This is simply a string. You can use this feature to ease logfile analysis.

FILENAME
If you want to add this message to a special logfile you pass the full path of
this file with FILENAME.

THROW
With this parameter you can provide a user defined exception to be thrown
on failure. The default exception thrown by this statement is log.

LOG
Alphabetical Reference

An exception will be thrown, if the log file is not writable or the path is not
reachable.

Alphabetical Reference <?LOG>

Example

If the variable $error is set a simple entry will be added to the default logfile.

<?IF COND=“$error != 0“>
 <?LOG MSG=“internal error: $error“>
<?/IF>

The error message “error in SQL statement“ is added to the special logfile
with the path /tmp/my.log. This entry is marked with the special type
dberror. If this file is not writable an exception called fileio is thrown.

<?LOG MSG=“error in SQL statement“
 TYPE=“dberror“
 FILE=“/tmp/my.log“
 THROW=“fileio“>
Alphabetical Reference 79

80
CIPP Command Reference <?MODULE>

Type

Import

Syntax

<?MODULE NAME=cipp_perl_module >
 ...
<?/MODULE>

Description

With this command you define a CIPP Perl Module. This works currently in a
new.spirit environment only.

The generated Perl code will be installed in the project specific lib/ folder and
can be imported with the <?REQUIRE> command. Don’t <?USE> for CIPP
Perl modules, because <?REQUIRE> does some database initialization.

Parameter

NAME
This is the name of the module you want to use. Nested module names are
delimited by ::.

It is not possible to use a variable or expression for NAME, you must always
use a literal string here.

MODULE
Alphabetical Reference

Alphabetical Reference <?MODULE>

Example

<?MODULE NAME=“Test::Module“>

<?SUB NAME=“new“>
 <?PERL>
 my $class = shift;
 return bless {
 foo => 1,
 }, $class;
 <?/PERL>
<?/SUB>

<?SUB NAME=“print_foo“>
 <?PERL>
 my $self = shift;
 print $self->{foo}, „<p>\n“;
 <?/PERL>
<?/SUB>

<?/MODULE>
Alphabetical Reference 81

82
CIPP Command Reference <?MY>

Type

Variables and Scoping

Syntax

<?MY [VAR=list_of_variables]
 variable_1 ... variable_N >

Description

This command declares private variables, using the Perl command my inter-
nally. Their scope reaches to the end of the block which surrounds the <?MY>
command, for example only inside a <?IF> block.

All types of Perl variables (Scalars, Arrays and Hashes) can be declared this
way.

If you want to initialize the variables with a value you must use the <?VAR>
command or Perl commands directly. <?MY> only declares variables. Their
initial value is undef.

Parameter

VAR
This parameter takes a comma separated list of variable names, that should
be declared. With this option it is possible to declare variables which are not
in lower case.

variable_1..variable_N
You can place additionel variables everywhere inside the <?MY>
command. This variables are always declared in lower case notation.

Note:

If you need a new variable for another CIPP command, you can most often
use the MY switch of that command, which declares the variable for you. This
saves you one additional CIPP command and makes your code more readable.

MY
Alphabetical Reference

Example

See <?BLOCK>

Alphabetical Reference <?OPTION>

Type

HTML Tag Replacement

Syntax

<?OPTION [VALUE=parameter_value]
 [additional_<OPTION>_parameters ...] >
...
<?/OPTION>

Description

This command generates a HTML <OPTION> tag, where the text inside the
<OPTION> block is HTML escaped and the VALUE is quoted. The usage of
the <?OPTION> command outside of a <?SELECT> block is forbidden. If the
surrounding <?SELECT> command has its STICKY option set, the select
state of the options are preserved (see <?SELECT> for more information
about the STICKY feature).

Parameter

VALUE
This is the VALUE of the generated <OPTION> tag. Its content will be
escaped.

additional_<OPTION>_parameters
All additional parameters are taken over without changes into the produced
<OPTION> tag.

Example

See the description of the <?SELECT> command for a complete example.
.

OPTION
Alphabetical Reference 83

84
CIPP Command Reference <?PERL>

Type

Control Structure

Syntax

<?PERL [COND=condition] >
...
<?/PERL>

Description

With this command you open a block with pure Perl commands. You may
place any valid Perl code inside this block.

You may use the Perl print statement to produce HTML code (or whatever
output you want) for the client.

At the moment, there are only two CIPP commands which are actually sup-
ported inside a <?PERL> block: <?INCLUDE> and <?SQL>. Support of
more commands will be added in the future.

Parameter

COND
If you set the COND parameter, the Perl block is only executed, if the given
condition is true.

Example

All occurences of the string ’nt’ in the scalar variable $str will be replaced by
’no thanks’. The result will be printed to the client.

<?PERL>
 $text =~ s/nt/no thanks/g;
 print $text;
<?/PERL>

PERL
Alphabetical Reference

Alphabetical Reference <?PERL>

If this list contains some elements a string based on the list is generated.

<?PERL COND=“scalar(@list) != 0“>
 my ($string, $element);
 foreach $element (@list) {
 $string .= $element;
 }
 print $string;
<?/PERL>
OK, its easier to use ’join’, but it’s
only an example... :-)

.

Alphabetical Reference 85

86
CIPP Command Reference <?!PROFILE>

Type

Preprocessor Command

Syntax

<?!PROFILE { ON | OFF }
 [DEEP] >

Description

This preprocessor command controls the generation of profiling code. This
feature is currently experimental, the syntax of the <?!PROFILE> command
may change in future.

If you switch profiling on, CIPP will generate profile code for the rest of the
file, respectively until a <?!PROFILE OFF> command occurs. Switching pro-
filing at runtime is not possible, because the <?!PROFILE> command takes
effect on the preprocessor.

Currently two tasks are profiled: SQL statements and Include executions. If
profiling is switched on, you’ll get a line on STDERR for every executed SQL
and Include command, which contains the corresponding execution time. You
need the Perl module Time::HiRes installed on your system if you want to use
profiling.

Parameter

ON | OFF
Switch profiling either on or off.

DEEP
If you set the DEEP option, the content all processed Includes will be
profiled, too. Otherwise only the document itself, where the <?!PROFILE>
command stands, will be profiled.

Note that the DEEP switch can produce lots of output.

!PROFILE
Alphabetical Reference

Alphabetical Reference <?!PROFILE>

Example

The following SQL Statement and Include will be profiled.

<?!PROFILE ON>
<?SQL SQL=“select foo, bla
 from bar
 where baz=?“
 PARAMS=“$baz“
 MY VAR=“$foo, $bla“>
 $foo $bla

<?/SQL>

<?INCLUDE NAME=“/foo/bar.inc“>

<?!/PROFILE OFF>

no profiling here
<?INCLUDE NAME=“/bar/foo.inc“>

Something like this will appear on STDERR and thus in your webserver error
log:

PROFILE 42421 START
PROFILE 42421 SQL select foo, baz 0.0178
PROFILE 42421 INCLUDE /foo/bar.inc 0.0020
PROFILE 42421 STOP

The 42421 is the PID of the serving process, so you can differ between out-
puts of several processes. You see the head of each SQL statement and the
name of an Include, followed by the execution time in seconds.

You can use the PROFILE option of the <?SQL> command to replace the out-
put of the SQL statement with a user defined label. See <?SQL> for details.
Alphabetical Reference 87

88
CIPP Command Reference <?REQUIRE>

Type

Import

Syntax

<?REQUIRE NAME=“cipp_perl_module“ >

Description

This command imports a module which was created with new.spirit in con-
junction with the <?MODULE> command. You can’t import other Perl mod-
ules, because <?REQUIRE> executes CIPP specific initialization code to
establish database connections, if they’re needed by the module.

<?REQUIRE> uses internally the Perl command ’require’ to import the mod-
ule. So CIPP Perl Modules are unable to export symbols to the callers
namespace. You have to fully quallify function names, or write OO style mod-
ules.

Parameter

NAME
This is the name of the module you want to use. Nested module names are
delimited by ::. This is the name of the module you provided with the
<?MODULE> command.

You may also place a scalar variable here, which contains the name of the
module. So it is possible to load modules dynamically at runtime.

Example

refer to the description of <?MODULE> to see
the implementation of the Test::Module module.
<?REQUIRE NAME=“Test::Module“>

<?PERL>
 my $t = new Test::Module;
 $t->print_foo;

REQUIRE
Alphabetical Reference

<?/PERL>

Alphabetical Reference <?ROLLBACK>

Type

SQL

Syntax

<?ROLLBACK [DB=database_name]
 [DBH=database_handle]
 [THROW=exception] >

Description

The <?ROLLBACK> command concludes the actual transaction and cancels
all changes to the database.

Using <?ROLLBACK> in <?AUTOCOMMIT ON> mode is not possible.

If you are not in <?AUTOCOMMIT ON> mode a transaction begins with the
first SQL statement and ends either with a <?COMMIT> or <?ROLLBACK>
command.

Parameter

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in the
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.

DBH
Use this option to pass an existing DBI database handle, which should used
for this SQL command. You can’t use the DBH option in conjunction with
DB.

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is

ROLLBACK
Alphabetical Reference 89

rollback.

If the underlying database is not capable of transactions (e.g. MySQL)
execution of this command will throw an exception.

90
CIPP Command Reference <?ROLLBACK>

Example

We insert a row into a database table and rollback the change immediately. We
throw a user defined exeption, if the rollback fails, maybe the database is not
capable of transactions.

<?SQL SQL=“insert into foo (num, str)
 values (42, ’bar’);“>
<?/SQL>
<?ROLLBACK THROW=“ROLLBACK_Exception“>
Alphabetical Reference

Alphabetical Reference <?SAVEFILE>

Type

Interface

Syntax

<?SAVEFILE FILENAME=server_side_filename
 VAR=upload_formular_variable
 [SYMBOLIC]
 [THROW=exception] >

Description

This command saves a file which was uploaded by a client in the webservers
filesystem.

Parameter

FILENAME
This is the fully qualified filename where the file will be stored.

VAR
This is the identifier you used in the HTML form for the filename on client
side, the value of the <INPUT NAME> parameter) .

SYMBOLIC
If this switch is set, VAR is the name of the variable which contains the
<INPUT TYPE=FILE> identifier. Use this if you want to determine the
name of the field at runtime.

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is
savefile.

Note

The client side file upload will only function proper if you set the encoding

SAVEFILE
Alphabetical Reference 91

type of the HTML form to ENCTYPE=“multipart/form-data“. Oth-
erwise you will get a exception, that the file could not be fetched.

92
CIPP Command Reference <?SAVEFILE>

There is another quirk you should notice. The variable which corresponds to
the <INPUT NAME> option in the file upload form is a GLOB reference (due
to the internal implementation of the CGI module, which CIPP uses). That
means, if you use that variable in string context you get the client side file-
name of the uploaded file. But also you can use the variable as a filehandle, to
read data from the file (this is what <?SAVEFILE> does for you).

This GLOB thing is usually no problem, as long as you don’t pass the variable
as a binding parameter to a <?SQL> command (because you want to store the
client side filename in the database). The DBI module (which CIPP uses for
the database stuff) complains about passing GLOBS as binding parameters.

The solution is to create a new variable assigned from the value of the file
upload variable enforced to be in string context using double quotes.

<?INTERFACE INPUT=“$upfilename“>
<?MY $client_filename>
<?PERL> $client_filename = “$upfilename“ <?/PERL>

Example

First we provide a HTML form with the file upload field.

<?FORM METHOD=“POST“ ACTION=“/image/save.cgi“
 ENCTYPE=“multipart/form-data“>
Fileupload:
<INPUT TYPE=FILE NAME=“upfilename“ SIZE=45>

<INPUT TYPE=“reset“>
<INPUT TYPE=“submit“ NAME=“submit“ VALUE=“Upload“>
</FORM>

The /image/save.cgi program has the following code to store the file in
the filesystem.

<?SAVEFILE FILENAME=“/tmp/upload.tmp“
 VAR=“upfilename“
 THROW=my_upload>

The same procedure using the RUNTIME parameter.

<?VAR MY=$field_name>upfilename<?/VAR>
<?SAVEFILE FILENAME=“/tmp/upload.tmp“
Alphabetical Reference

 SYMBOLIC
 VAR=“$field_name“
 THROW=upload>

Alphabetical Reference <?SELECT>

Type

HTML Tag Replacement

Syntax

<?SELECT [NAME=parameter_name]
 [MULTIPLE] [STICKY]
 [additional_<SELECT>_parameters ...] >
...
<?/SELECT>

Description

This command generates a selection widget providing preservation of the
selection state (similar to the STICKY feature of the <?INPUT> command).

Parameter

NAME
The name of the formular widget.

MULTIPLE
If this is set, a multi selection list will be generated, instead of a single
selection popup widget.

STICKY
If the STICKY option is set, the <?OPTION> commands inside the
<?SELECT> block preserve their state in generating automatically a
SELECTED option, if the corresponding entry was selected before. This is
done in checking the value of the corresponding Perl variable (which is
$parameter_name for a popup and @parameter_name for
MULTIPLE selection list). If you assign a value to the STICKY option, this
will be taken as the Perl variable for checking the state of the widget. But
the default behaviour of deriving the name from the NAME option will fit
most cases.

SELECT
Alphabetical Reference 93

additional_<SELECT>_parameters
All additional parameters are taken over without changes into the produced
<SELECT> tag.

94
CIPP Command Reference <?SELECT>

Note

If you use the STICKY feature in conjuncion with a MULTIPLE selection list
widget, please note that the internal implementation may be ineffective, if you
handle large lists. This is due the internal representation of the list values as an
array, so a grep is neccesary to check, wheter a list entry is selected or not. If
you feel uncomfortable about that, use classic HTML <SELECT> and
<OPTION> tags, maybe with a loop around it, and check state of the check-
boxes using a hash.

Example

This is a complete CIPP program, which provides a mulitple selection list and
preservers its state over subsequent executions of the program.

<?INCINTERFACE OPTIONAL=“@list“>

<?FORM ACTION=“sticky.cgi“>

<?SELECT NAME=“list“ MULTIPLE STICKY>
<?OPTION VALUE=“1“>value 1<?/OPTION>
<?OPTION VALUE=“2“>value 2<?/OPTION>
<?OPTION VALUE=“3“>value 3<?/OPTION>
<?/SELECT>

<?INPUT TYPE=“submit“ VALUE=“send“>

<?/FORM>
Alphabetical Reference

Alphabetical Reference <?SQL>

Type

SQL

Syntax

<?SQL SQL=sql_statement
 [VAR=list_of_variables_for_the_result]
 [PARAMS=input_parameter]
 [WINSTART=start_row]
 [WINSIZE=number_of_rows_to_fetch]
 [RESULT=sql_return_code]
 [DB=database_name]
 [DBH=database_handle]
 [THROW=exception] >
 [MY]
 [PROFILE=profile_label]
...
<?/SQL>

Description

Use the <?SQL> command to execute arbitrary SQL statements in a specific
database. You can fetch results from a SELECT query, or simply execute
INSERT, UPDATE or other SQL statements.

When you execute a SELECT query (resp. set the VAR parameter, see below)
the code inside the <?SQL> block will be repeated for every row returned
from the database.

Parameter

SQL
This takes the SQL statement to be executed. A trailing semicolon will be
stripped off.

The statement may contain ? placeholders. They will be replaced by the
expressions listed in the PARAMS parameter. See the PARAMS section for
details about placeholders.

SQL
Alphabetical Reference 95

96
CIPP Command Reference <?SQL>

This is an example of a simple insert without placeholders.

<?SQL SQL=“insert into foo values (42, ’bar’)“>
<?/SQL>

VAR
If you set the VAR parameter, CIPP asumes that you execute a SQL
statement which returns a result set (normally a SELECT statement).

The VAR parameter takes a list of scalar variables. Each variable
corresponds to the according column of the result set, so the position of the
variables inside the list is relevant.

You can use this variable inside the <?SQL> block to access the actual
processed row of the result set. Below the <?SQL> block the variable
contains the values of the last row fetched, even when they are implicitely
declared via a MY switch.

This is an example of creating a simple HTML table out of an SQL result
set.

<TABLE>
 <?SQL SQL=“select num, str from foo“
 MY VAR=“$n, $s“>
 <TR>
 <TD>$n</TD>
 <TD>$s</TD>
 </TR>
 <?/SQL>
</TABLE>

PARAMS
All placeholders inside your SQL statement will be replaced with the values
given in PARAMS. It expects a comma separated list (white spaces are
ignored) of Perl expressions, normally variables (scalar or array), literals or
constants. The Perl value undef will be translated to the SQL value NULL.
The content of the first expression substitutes the first placeholder in the
SQL string, etc.
Alphabetical Reference

Alphabetical Reference <?SQL>

Values of parameters are quoted, if necessary, before substitution. This is
the main advantage of PARAMS in this context. (You could place the perl
variables into the SQL statement as such, but you would have to use
<?DBQUOTE> on them first. Or else.).

Beware that you cannot use placeholders to contain (parts of) SQL code.
The SQL must contain the syntactically complete statement - placeholders
can only contain values. (The main reason for this is that the SQL statement
is parsed by most databases before the placeholders are substituted. See the
DBI manpage for details about placeholders.)

Here are some examples which demonstate the usage of placeholders.

<?VAR MY NAME=$n>42<?/VAR>
<?VAR MY NAME=$s>Hello ’World’<?/VAR>
<?SQL SQL=“insert into foo values (?, ?, ?)“
 PARAMS=“$n, $s, time()“>
<?/SQL>

<?VAR MY NAME=$where_num>42<?/VAR>
<?SQL SQL=“select num,str from foo
 where num = ?“
 PARAMS=“$where_num“>
 MY VAR=“$column_n, $column_s“>
 n=$column_n s=’$column_s’

<?/SQL>

<?SQL SQL=“update foo
 set str=?
 where n=?“
 PARAMS=“$s, $where_num“>
<?/SQL>

WINSTART
If you want to process only a part of the result set you can specfiy the first
row you want to see with the WINSTART parameter. All rows before the
given WINSTART row will be fetched but ignored. Execution of the
<?SQL> block begins with the WINSTART row.

The row count begins with 1.
Alphabetical Reference 97

98
CIPP Command Reference <?SQL>

Here is an example. The first 5 rows will be skipped.

<?SQL SQL=“select num, str from foo“
 MY VAR=“$n, $s“
 WINSTART=6
 n=$n s=’$s’

<?/SQL>

WINSIZE
Set this parameter to specify the number of rows you want to process. You
can combine this parameter with WINSTART to process a “window“ of the
result set.

This is an example of doing this (skipping 5 rows, processing 5 rows).

<?SQL SQL=“select num, str from foo“
 MY VAR=“$n, $s“
 WINSTART=6 WINSIZE=5
 n=$n s=’$s’

<?/SQL>

RESULT
Some SQL statements return a scalar result value, e.g. the number of rows
processed (e.b. UPDATE and DELETE). The variable placed here will take
the SQL result code, if there is one.

Example:

<?SQL SQL=“delete from foo where num=42“
 MY RESULT=$deleted>
<?/SQL>
Successfully deleted $deleted rows!

DB
This is the CIPP internal name of the database for this command. In
CGI::CIPP or Apache::CIPP environment this name has to be defined in the
appropriate global configuration. In a new.spirit environment this is the
name of the database configuration object in dot-separated notation.

If DB is ommited the project default database is used.
Alphabetical Reference

Alphabetical Reference <?SQL>

DBH
Use this option to pass an existing DBI database handle, which should used
for this SQL command. You can’t use the DBH option in conjunction with
DB.

THROW
With this parameter you can provide a user defined exception which should
be thrown on failure. The default exception thrown by this statement is
sql.

MY
If you set the MY switch all created variables will be declared using ’my’.
Their scope reaches to the end of the block which surrounds the <?SQL>
command.

PROFILE
Here you can define a profile label for this SQL statement. If you use the
<?!PROFILE> command this label is printed out instead of the head of the
SQL statement. See the chapter of <?!PROFILE> about details.

Breaking the <?SQL> loop

If you want to break the SQL loop of a select statement, simply use this Perl
Code:

<?PERL>
 last SQL;
<?/PERL>

Example

Please refer to the examples in the parameter sections above.
Alphabetical Reference 99

100
CIPP Command Reference <?SUB>

Type

Control Structure

Syntax

<?SUB NAME=subroutine_name >
...
<?/SUB>

Description

This defines the <?SUB> block as a Perl subroutine. You may use any CIPP
commands inside the block.

Generally Includes are the best way to create reusable modules with CIPP. But
sometimes you need real Perl subroutines, e.g. if you want to do some OO
programming.

Parameter

NAME
This is the name of the subroutine. Please refer to the perlsub manpage for
details about Perl subroutines.

It is not possible to declare protoyped subroutines with <?SUB>.

Example

This is a subroutine to create a text input field in a specific layout.

<?SUB NAME=print_input_field>
 # Catch the input parameters
 <?MY $label $name $value>
 <?PERL>
 ($label, $name, $value) = @_;
 <?/PERL>

 # print the text field
 <P>

SUB
Alphabetical Reference

 $label:

 <?INPUT TYPE=TEXT SIZE=40 NAME=$name VALUE=$value>
<?/SUB>

Alphabetical Reference <?SUB>

You may call this subroutine from every Perl context this way.

<?PERL>
 print_input_field (’Firstname’, ’firstname’,
 ’Larry’);
 print_input_field (’Lastname’, ’surname’,
 ’Wall’);
<?/PERL>
Alphabetical Reference 101

102
CIPP Command Reference <?TEXTAREA>

Type

HTML Tag Replacement

Syntax

<?TEXTAREA [additional_<TEXTAREA>_parameters ...]>
...
<?/TEXTAREA>

Description

This generates a HTML <TEXTAREA> tag, with a HTML quoted content to
prevent from HTML syntax clashes.

Parameter

additional_<TEXTAREA>_parameters
There are no special parameters. All parameters you pass to
<?TEXTAREA> are taken in without changes.

Example

This creates a <TEXTAREA> initialized with the content of the variable
$fulltext.

<?VAR MY NAME=$fulltext>HTML Text<?/VAR>
<?TEXTAREA NAME=fulltext ROWS=10
COLS=80>$fulltext<?/TEXTAREA>

This leads to the following HTML code.

<TEXTAREA NAME=fulltext ROWS=10
COLS=80>HTML Text</TEXTAREA>

TEXTAREA
Alphabetical Reference

Alphabetical Reference <?THROW>

Type

Exception Handling

Syntax

<?THROW THROW=exception [MSG=message] >

Description

This command throws an user specified exception.

Parameter

THROW
This is the exception identifier, a simple string. It is the criteria for the
<?CATCH> command.

MSG
Optionally, you can pass a additional message for your exception, e.g. a
error message you have got from a system call.

Example

We try to open a file and throw a exception if this fails.

<?MY $error>
<?PERL>
 open (INPUT, ’/bar/foo’) or $error=$!;
<?/PERL>

<?IF COND=“$error“>
 <?THROW THROW=“open_file“
 MSG=“file /bar/foo, $error“>
<?/IF>

Note

If you want to throw a exception inside a Perl block you can do this with the

THROW
Alphabetical Reference 103

Perl die function. The die argument must follow this convention:

 identifier TAB message

104
CIPP Command Reference <?THROW>

This is the above example using this technique.

<?PERL>
 open (INPUT, ’/bar/foo’)
 or die “open_file\tfile /bar/foo, $!“;
<?/PERL>
Alphabetical Reference

Alphabetical Reference <?TRY>

Type

Exception Handling

Syntax

<?TRY >
...
<?/TRY >

Description

Normally your program exits with a general exception message if an error/
exception occurs or is thrown explicitely. The general exception handler
which is responsible for this behaviour is part of any program code which
CIPP generates.

You can provide your own exception handling using the <?TRY> and
<?CATCH> commands.

All exceptions thrown inside a <?TRY> block are caught. You can use a sub-
sequent <?CATCH> block to process the exceptions to set up your own
exception handling.

If you ommit the <?CATCH> block, nothing will happen. You never see
something of the exception, it will be fully ignored and the program works on.

Example

We try to insert a row into a database table and write a log file entry with the
error message, if the INSERT fails.

<?TRY>
 <?SQL SQL=“insert into foo values (42, ’bar’)“>
 <?/SQL>
<?/TRY>

<?CATCH THROW=“insert“ MY MSGVAR=“$msg“>
 <?LOG MSG=“unable to insert row, $msg“
 TYPE=“database“>

TRY
Alphabetical Reference 105

<?/CATCH>

106
CIPP Command Reference <?URLENCODE>

Type

URL and Form Handling

Syntax

<?URLENCODE VAR=unencoded_variable
 [MY] ENCVAR=encoded_variable >

Description

Use this command to URL encode the content of a scalar variable. Parameters
passed via URL always have to be encoded this way, otherwise you risk syn-
tax clashes.

Parameter

VAR
This is the variable you want to be encoded.

ENCVAR
The encoded result will be stored in this variable.

MY
If you set the MY switch the created variable will be declared using ’my’. Its
scope reaches to the end of the block which surrounds the
<?URLENCODE> command.

Example

In this example we link an external CGI script and pass the content of the vari-
able $query after using <?URLENCODE> on it.

<?URLENCODE VAR=$query MY ENCVAR=$enc_query>

find something

Hint: in CGI::CIPP and Apache::CIPP environments you also can use the

URLENCODE
Alphabetical Reference

<?A> command for doing this.

Alphabetical Reference <?USE>

Type

Import

Syntax

<?USE NAME=perl_module >

Description

With this command you can access the extensive Perl module library. You can
access any Perl module which is installed on your system.

In a new.spirit environment you can place user defined modules in the prod/
lib directory of your project, which is included in the library search path by
default.

If you want to use a CIPP Module (generated with new.spirit and the <?MOD-
ULE> command), use <?REQUIRE> instead.

Parameter

NAME
This is the name of the module you want to use. Nested module names are
delimited by ::. This is exactly what the Perl use pragma expects (you
guessed right, CIPP simply translates <?USE> to use :-).

It is not possible to use a variable or expression for NAME, you must always
use a literal string here.

Example

The standard modules File::Path and Text::Wrap are imported to your pro-
gram.

<?USE NAME=“File::Path“>
<?USE NAME=“Text::Wrap“>

USE
Alphabetical Reference 107

108
CIPP Command Reference <?VAR>

Type

Variables and Scoping

Syntax

<?VAR NAME=variable
 [MY]
 [DEFAULT=value]
 [NOQUOTE]>
...
<?/VAR>

Description

This command defines and optionally declares a Perl variable of any type
(scalar, array and hash). The value of the variable is derived from the content
of the <?VAR> block. You can assign constants, string expressions and any
Perl expressions this way.

It is not possible to nest the <?VAR> command or to use any CIPP command
inside the <?VAR> block. The content of the <?VAR> block will be evaluated
and assigned to the variable.

Parameter

NAME
This is the name of the variable. You must specify the full Perl variable
here, including the $, @ or % sign to indicate the type of the variable.

These are some examples for creating variables using <?VAR>.

<?VAR NAME=$skalar>a string<?/VAR>
<?VAR NAME=@liste>(1,2,3,4)<?/VAR>
<?VAR NAME=%hash>(1 => ’a’, 2 => ’b’)<?/VAR>

DEFAULT
If you set the DEFAULT parameter, this value will be assigned to the
variable, if the variable is actually undef. In this case the content of the

VAR
Alphabetical Reference

<?VAR> block will be ignored.

Setting the DEFAULT parameter is only supported for scalar variables.

Alphabetical Reference <?VAR>

You can use this feature to provide default values for input parameters this
way.

<?VAR NAME=$event DEFAULT=“show“>$event<?/VAR>

Hint: you may think there must be a easier way of doing this. You are right.
:-) We recommend you using this alternative code, the usage of DEFAULT
is deprecated.

<?PERL>
 $event ||= ’show’;
<?/PERL>

NOQUOTE
By default the variable is defined by assigning the given value using double
quotes. This means it is possible to assign either string constants or string
expressions to the variable without using extra quotes.

If you do not want the content of <?VAR> block to be evaluated in string
context set the NOQUOTE switch. E.g., so it is possible to assign an integer
expression to the variable.

This is an example of using NOQUOTE for an non string expression.

<?VAR MY NAME=$element_cnt NOQUOTE>
 scalar(@liste)
<?/VAR>

MY
If you set the MY switch the created variable will be declared using ’my’. Its
scope reaches to the end of the block which surrounds the <?VAR>
command.

Example

Please refer to the examples in the parameter sections above.
Alphabetical Reference 109

110
CIPP Command Reference <?WHILE>

Type

Control Structure

Syntax

<?WHILE COND=condition >
...
<?/WHILE>

Description

This realizes a loop, where the condition is checked first before entering the
loop code.

Parameter

COND
As long as this Perl condition is true, the <?WHILE> block will be
repeated.

Example

This creates a HTML table out of an array using <?WHILE> to iterate over
the two arrays @firstname and @lastname, assuming that they are of identical
size.

<TABLE>
<?VAR MY NAME=$i>0<?/VAR>
<?WHILE COND=“$i++ < scalar(@lastname)“>
 <TR>
 <TD>$lastname[$i]</TD>
 <TD>$firstname[$i]</TD>
 </TR>
<?/WHILE>
</TABLE>

WHILE
Alphabetical Reference

	CIPP Reference Guide
	Copyright 1999-2001 dimedis GmbH, Cologne All Rights Reserved

	Table Of Contents
	CHAPTER 1 CIPP - CGI Perl Preprocessor
	Introduction
	CIPP generates Perl code

	Environments where CIPP can be used
	CGI::CIPP
	Apache::CIPP
	new.spirit

	Basic Syntax Rules
	CIPP command structure
	Case sensitivity of CIPP parameters
	CIPP return parameters
	Context of CIPP commands
	1. HTML
	2. Variable Assignment
	3. Perl

	Add comments to your source

	Error messages
	CIPP errors
	Perl errors

	CIPP preprocessor commands
	1. The <?AUTOPRINT> command causes CIPP not to generate any HTTP headers for you. So the <?ELSE> ...
	2. But even if you print headers there (with „Content-type: text/html“): the HTML block will not ...

	CHAPTER 2 CIPP Configuration
	CGI::CIPP
	Using a extra ScriptAlias
	Using mod_rewrite
	CGI::SpeedyCGI and CIPP::CGI

	Apache::CIPP

	CHAPTER 3 CIPP Command Reference
	Command Groups
	Variables and Scoping
	Control Structures
	Import
	Exception Handling
	SQL
	URL- and Form Handling
	HTML Tag Replacements
	Interface
	Apache
	Preprocessor
	Debugging

	Alphabetical Reference
	#
	A
	APGETREQUEST
	APREDIRECT
	AUTOCOMMIT
	!AUTOPRINT
	BLOCK
	CATCH
	COMMIT
	CONFIG
	DBQUOTE
	DO
	DUMP
	ELSE
	ELSIF
	FOREACH
	FORM
	GETPARAM
	GETPARAMLIST
	GETURL
	HIDDENFIELDS
	HTMLQUOTE
	!HTTPHEADER
	IF
	IMG
	INCINTERFACE
	INCLUDE
	INPUT
	INTERFACE
	LOG
	MODULE
	MY
	OPTION
	PERL
	!PROFILE
	REQUIRE
	ROLLBACK
	SAVEFILE
	SELECT
	SQL
	SUB
	TEXTAREA
	THROW
	TRY
	URLENCODE
	USE
	VAR
	WHILE

